Geometry of Nonholonomically Constrained Systems

Geometry of Nonholonomically Constrained Systems PDF

Author: Richard H. Cushman

Publisher: World Scientific

Published: 2010

Total Pages: 421

ISBN-13: 9814289493

DOWNLOAD EBOOK →

1. Nonholonomically constrained motions. 1.1. Newton's equations. 1.2. Constraints. 1.3. Lagrange-d'Alembert equations. 1.4. Lagrange derivative. 1.5. Hamilton-d'Alembert equations. 1.6. Distributional Hamiltonian formulation. 1.7. Almost Poisson brackets. 1.8. Momenta and momentum equation. 1.9. Projection principle. 1.10. Accessible sets. 1.11. Constants of motion. 1.12. Notes -- 2. Group actions and orbit spaces. 2.1. Group actions. 2.2. Orbit spaces. 2.3. Isotropy and orbit types. 2.4. Smooth structure on an orbit space. 2.5. Subcartesian spaces. 2.6. Stratification of the orbit space by orbit types. 2.7. Derivations and vector fields on a differential space. 2.8. Vector fields on a stratified differential space. 2.9. Vector fields on an orbit space. 2.10. Tangent objects to an orbit space. 2.11. Notes -- 3. Symmetry and reduction. 3.1. Dynamical systems with symmetry. 3.2. Nonholonomic singular reduction. 3.3. Nonholonomic regular reduction. 3.4. Chaplygin systems. 3.5. Orbit types and reduction. 3.6. Conservation laws. 3.7. Lifted actions and the momentum equation. 3.8. Notes -- 4. Reconstruction, relative equilibria and relative periodic orbits. 4.1. Reconstruction. 4.2. Relative equilibria. 4.3. Relative periodic orbits. 4.4. Notes -- 5. Carathéodory's sleigh. 5.1. Basic set up. 5.2. Equations of motion. 5.3. Reduction of the E(2) symmetry. 5.4. Motion on the E(2) reduced phase space. 5.5. Reconstruction. 5.6. Notes -- 6. Convex rolling rigid body. 6.1. Basic set up. 6.2. Unconstrained motion. 6.3. Constraint distribution. 6.4. Constrained equations of motion. 6.5. Reduction of the translational [symbol] symmetry. 6.6. Reduction of E(2) symmetry. 6.7. Body of revolution. 6.8. Notes -- 7. The rolling disk. 7.1. General set up. 7.2. Reduction of the E(2) x S[symbol] symmetry. 7.3. Reconstruction. 7.4. Relative equilibria. 7.5. A potential function on an interval. 7.6. Scaling. 7.7. Solutions of the rescaled Chaplygin equations. 7.8. Bifurcations of a vertical disk. 7.9. The global geometry of the degeneracy locus. 7.10. Falling flat. 7.11. Near falling flat. 7.12. The bifurcation diagram. 7.13. The integral map. 7.14. Constant energy slices. 7.15. The spatial rotational shift. 7.16. Notes.

Geometric, Control and Numerical Aspects of Nonholonomic Systems

Geometric, Control and Numerical Aspects of Nonholonomic Systems PDF

Author: Jorge Cortés Monforte

Publisher: Springer Science & Business Media

Published: 2002-09-11

Total Pages: 244

ISBN-13: 9783540441540

DOWNLOAD EBOOK →

Nonholonomic systems are a widespread topic in several scientific and commercial domains, including robotics, locomotion and space exploration. This work sheds new light on this interdisciplinary character through the investigation of a variety of aspects coming from several disciplines. The main aim is to illustrate the idea that a better understanding of the geometric structures of mechanical systems unveils new and unknown aspects to them, and helps both analysis and design to solve standing problems and identify new challenges. In this way, separate areas of research such as Classical Mechanics, Differential Geometry, Numerical Analysis or Control Theory are brought together in this study of nonholonomic systems.

Dynamics of Nonholonomic Systems

Dynamics of Nonholonomic Systems PDF

Author: Juru Isaakovich Ne_mark

Publisher: American Mathematical Soc.

Published: 2004-07-16

Total Pages: 530

ISBN-13: 082183617X

DOWNLOAD EBOOK →

The goal of this book is to give a comprehensive and systematic exposition of the mechanics of nonholonomic systems, including the kinematics and dynamics of nonholonomic systems with classical nonholonomic constraints, the theory of stability of nonholonomic systems, technical problems of the directional stability of rolling systems, and the general theory of electrical machines. The book contains a large number of examples and illustrations.

Nonholonomic Mechanics and Control

Nonholonomic Mechanics and Control PDF

Author: A.M. Bloch

Publisher: Springer Science & Business Media

Published: 2007-09-27

Total Pages: 501

ISBN-13: 0387955356

DOWNLOAD EBOOK →

This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.

Nonholonomic Mechanics and Control

Nonholonomic Mechanics and Control PDF

Author: A.M. Bloch

Publisher: Springer

Published: 2015-11-05

Total Pages: 582

ISBN-13: 1493930176

DOWNLOAD EBOOK →

This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.

Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint

Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint PDF

Author: Patrick J. Rabier

Publisher: SIAM

Published: 2000-01-01

Total Pages: 143

ISBN-13: 089871446X

DOWNLOAD EBOOK →

Focuses on rigid body systems subjected to kinematic constraints and discusses in detail how the equations of motion are developed. The authors show that such motions can be modeled in terms of differential algebraic equations (DAEs), provided only that the correct variables are introduced.

Nonholonomic Geometry, Mechanics and Control

Nonholonomic Geometry, Mechanics and Control PDF

Author: Rui Yang

Publisher:

Published: 1992

Total Pages: 163

ISBN-13:

DOWNLOAD EBOOK →

The motions of various mechanical systems which we wish to synthesize and control often have to satisfy certain kinds of restrictions imposed by the natural environment or the structure of the systems themselves. In mechanics, such restrictions are called constraints. Although the fundamental theory of mechanical systems with constraints was established and developed in the last century, recent research and developments in analytical mechanics and control theory from a geometric viewpoint have inspired a strong desire to reinterpret and reformulate the theory of constrained dynamics in an intrinsic geometric way. In addition, many practical problems in recent investigations in mechanical and electrical engineering, such as modeling and control of mobile robots and dextrons robotic hands, and the design and control of spacecraft, also show the need for a deeper understanding of the role that constraints play in mechanical systems.

On Geometric Control Design for Holonomic and Nonholonomic Mechanical Systems

On Geometric Control Design for Holonomic and Nonholonomic Mechanical Systems PDF

Author: Jason M. Osborne

Publisher:

Published: 2007

Total Pages: 241

ISBN-13: 9780549077602

DOWNLOAD EBOOK →

An overarching and unifying theme for this document is that viewing mechanical systems through a geometric lens opens up an extensive set of tools that can be brought to bear upon energy, mass, and system---conscious control design for constrained mechanical systems. To demonstrate this thesis we consider the dynamics and control for several mechanical systems.

Introduction to Dynamical Systems and Geometric Mechanics

Introduction to Dynamical Systems and Geometric Mechanics PDF

Author: Jared M. Maruskin

Publisher: Solar Crest Publishing LLC

Published: 2012-04

Total Pages: 376

ISBN-13: 0985062711

DOWNLOAD EBOOK →

Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explores similar systems that instead evolve on differentiable manifolds. In the study of geometric mechanics, however, additional geometric structures are often present, since such systems arise from the laws of nature that govern the motions of particles, bodies, and even galaxies.In the first part of the text, we discuss linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the text begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms. The final chapters cover Lagrangian and Hamiltonian mechanics from a modern geometric perspective, mechanics on Lie groups, and nonholonomic mechanics via both moving frames and fiber bundle decompositions. The text can be reasonably digested in a single-semester introductory graduate-level course. Each chapter concludes with an application that can serve as a springboard project for further investigation or in-class discussion.

Motion, Control, and Geometry

Motion, Control, and Geometry PDF

Author: National Research Council

Publisher: National Academies Press

Published: 1997-06-07

Total Pages: 81

ISBN-13: 030905785X

DOWNLOAD EBOOK →

Some of the modem developments described in Motion, Control, and Geometry include the geometric control of robot motion and craft orientation, how high-power precision micromotors are engineered for less invasive surgery and self-focusing lens applications, what a mobile robot on a surface has in common with one moving in three dimensions, and how the motion-control problem is simplified by a coupled oscillator's geometric grouping of degrees of freedom and motion time scales. The four papers in these proceedings provide a view through the scientific portal of today's motion-control geometric research into tomorrow's technology. The mathematics needed to carry out this research is that of modem differential geometry, and the questions raised in the field of motion-control geometry go directly to the research frontier. Geometry is a mathematical area too often neglected nowadays in a student's education. This publication will help adjust the control initially imposed about 2,300 years ago on one kind of "motion"-that of students entering Plato's Academy, where the following caveat was inscribed above the doorway: "Let no one ignorant of geometry enter here." Readers of these chapters will gain an appreciation of modem geometry and how it continues to play a crucial role in the context of motion control in cutting-edge science and technology.