Geometric Computing with Clifford Algebras

Geometric Computing with Clifford Algebras PDF

Author: Gerald Sommer

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 559

ISBN-13: 3662046210

DOWNLOAD EBOOK →

This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.

Geometric Algebra Computing

Geometric Algebra Computing PDF

Author: Eduardo Bayro-Corrochano

Publisher: Springer Science & Business Media

Published: 2010-05-19

Total Pages: 527

ISBN-13: 1849961085

DOWNLOAD EBOOK →

This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.

Foundations of Geometric Algebra Computing

Foundations of Geometric Algebra Computing PDF

Author: Dietmar Hildenbrand

Publisher: Springer Science & Business Media

Published: 2012-12-31

Total Pages: 217

ISBN-13: 3642317944

DOWNLOAD EBOOK →

The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.

Geometric Computing for Perception Action Systems

Geometric Computing for Perception Action Systems PDF

Author: Eduardo Bayro Corrochano

Publisher: Springer Science & Business Media

Published: 2011-06-27

Total Pages: 248

ISBN-13: 1461301777

DOWNLOAD EBOOK →

After an introduction to geometric algebra, and the necessary math concepts that are needed, the book examines a variety of applications in the field of cognitive systems using geometric algebra as the mathematical system. There is strong evidence that geobetric albegra can be used to carry out efficient computations at all levels in the cognitive system. Geometric algebra reduces the complexity of algebraic expressions and as a result, it improves algorithms both in speed and accuracy. The book is addressed to a broad audience of computer scientists, cyberneticists, and engineers. It contains computer programs to clarify and demonstrate the importance of geometric algebra in cognitive systems.

Geometric Algebra with Applications in Science and Engineering

Geometric Algebra with Applications in Science and Engineering PDF

Author: Eduardo Bayro Corrochano

Publisher: Springer Science & Business Media

Published: 2001-04-20

Total Pages: 632

ISBN-13: 9780817641993

DOWNLOAD EBOOK →

The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling of disbelief that the fundamental geometric product of vectors could have been left out of his undergraduate mathematics education. Geometric algebra provides a rich, general mathematical framework for the develop ment of multilinear algebra, projective and affine geometry, calculus on a manifold, the representation of Lie groups and Lie algebras, the use of the horosphere and many other areas. This book is addressed to a broad audience of applied mathematicians, physicists, computer scientists, and engineers.

Clifford Algebras with Numeric and Symbolic Computations

Clifford Algebras with Numeric and Symbolic Computations PDF

Author: Rafal Ablamowicz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 328

ISBN-13: 1461581575

DOWNLOAD EBOOK →

This edited survey book consists of 20 chapters showing application of Clifford algebra in quantum mechanics, field theory, spinor calculations, projective geometry, Hypercomplex algebra, function theory and crystallography. Many examples of computations performed with a variety of readily available software programs are presented in detail.

Introduction to Geometric Algebra Computing

Introduction to Geometric Algebra Computing PDF

Author: Dietmar Hildenbrand

Publisher: CRC Press

Published: 2020-12-29

Total Pages: 212

ISBN-13: 1498748414

DOWNLOAD EBOOK →

From the Foreword: "Dietmar Hildenbrand's new book, Introduction to Geometric Algebra Computing, in my view, fills an important gap in Clifford's geometric algebra literature...I can only congratulate the author for the daring simplicity of his novel educational approach taken in this book, consequently combined with hands on computer based exploration. Without noticing, the active reader will thus educate himself in elementary geometric algebra algorithm development, geometrically intuitive, highly comprehensible, and fully optimized." --Eckhard Hitzer, International Christian University, Tokyo, Japan Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap with an introduction to Geometric Algebra from an engineering/computing perspective. This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.

Invariant Algebras and Geometric Reasoning

Invariant Algebras and Geometric Reasoning PDF

Author: Hongbo Li

Publisher: World Scientific

Published: 2008

Total Pages: 533

ISBN-13: 9812770119

DOWNLOAD EBOOK →

The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics OCo among them, GrassmannOCoCayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of GrassmannOCoCayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras OCo Cayley bracket algebra, conformal geometric algebra, and null bracket algebra OCo for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide. Sample Chapter(s). Chapter 1: Introduction (252 KB). Contents: Projective Space, Bracket Algebra and GrassmannOCoCayley Algebra; Projective Incidence Geometry with Cayley Bracket Algebra; Projective Conic Geometry with Bracket Algebra and Quadratic Grassmann-Cayley Algebra; Inner-product Bracket Algebra and Clifford Algebra; Geometric Algebra; Euclidean Geometry and Conformal GrassmannOCoCayley Algebra; Conformal Clifford Algebra and Classical Geometries. Readership: Graduate students in discrete and computational geometry, and computer mathematics; mathematicians and computer scientists.

Geometric Algebra for Computer Science

Geometric Algebra for Computer Science PDF

Author: Leo Dorst

Publisher: Elsevier

Published: 2010-07-26

Total Pages: 664

ISBN-13: 0080553109

DOWNLOAD EBOOK →

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA