Geometric Algebra for Computer Science

Geometric Algebra for Computer Science PDF

Author: Leo Dorst

Publisher: Elsevier

Published: 2010-07-26

Total Pages: 664

ISBN-13: 0080553109

DOWNLOAD EBOOK →

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA

Introduction to Geometric Computing

Introduction to Geometric Computing PDF

Author: Sherif Ghali

Publisher: Springer Science & Business Media

Published: 2008-07-05

Total Pages: 338

ISBN-13: 1848001150

DOWNLOAD EBOOK →

Computing is quickly making much of geometry intriguing not only for philosophers and mathematicians, but also for scientists and engineers. What is the core set of topics that a practitioner needs to study before embarking on the design and implementation of a geometric system in a specialized discipline? This book attempts to find the answer. Every programmer tackling a geometric computing problem encounters design decisions that need to be solved. This book reviews the geometric theory then applies it in an attempt to find that elusive "right" design.

Geometric Algebra Computing

Geometric Algebra Computing PDF

Author: Eduardo Bayro Corrochano

Publisher: Springer

Published: 2014-09-25

Total Pages: 526

ISBN-13: 9781447157687

DOWNLOAD EBOOK →

This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.

Geometric Computing with Clifford Algebras

Geometric Computing with Clifford Algebras PDF

Author: Gerald Sommer

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 559

ISBN-13: 3662046210

DOWNLOAD EBOOK →

This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.

Geometric Methods and Applications

Geometric Methods and Applications PDF

Author: Jean Gallier

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 584

ISBN-13: 1461301378

DOWNLOAD EBOOK →

As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.

Applications of Geometric Algebra in Computer Science and Engineering

Applications of Geometric Algebra in Computer Science and Engineering PDF

Author: Leo Dorst

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 479

ISBN-13: 146120089X

DOWNLOAD EBOOK →

Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi- particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.

Computational Geometry

Computational Geometry PDF

Author: Mark de Berg

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 370

ISBN-13: 3662042452

DOWNLOAD EBOOK →

This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.

Handbook of Geometric Computing

Handbook of Geometric Computing PDF

Author: Eduardo Bayro Corrochano

Publisher: Springer Science & Business Media

Published: 2005-12-06

Total Pages: 773

ISBN-13: 3540282475

DOWNLOAD EBOOK →

Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.

LEDA

LEDA PDF

Author: Kurt Mehlhorn

Publisher: Cambridge University Press

Published: 1999-11-11

Total Pages: 1050

ISBN-13: 9780521563291

DOWNLOAD EBOOK →

LEDA is a library of efficient data types and algorithms and a platform for combinatorial and geometric computing on which application programs can be built. In each of the core computer science areas of data structures, graph and network algorithms, and computational geometry, LEDA covers all (and more) that is found in the standard textbooks. LEDA is the first such library; it is written in C++ and is available on many types of machine. Whilst the software is freely available worldwide and is installed at hundreds of sites, this is the first book devoted to the library. Written by the main authors of LEDA, it is the definitive account, describing how the system is constructed and operates and how it can be used. The authors supply ample examples from a range of areas to show how the library can be used in practice, making the book essential for all workers in algorithms, data structures and computational geometry.