Geochemistry of Geologic CO2 Sequestration

Geochemistry of Geologic CO2 Sequestration PDF

Author: Donald J. DePaolo

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-12-17

Total Pages: 556

ISBN-13: 1501508075

DOWNLOAD EBOOK →

Volume 77 of Reviews in Mineralogy and Geochemistry focuses on important aspects of the geochemistry of geological CO2 sequestration. It is in large part an outgrowth of research conducted by members of the U.S. Department of Energy funded Energy Frontier Research Center (EFRC) known as the Center for Nanoscale Control of Geologic CO2 (NCGC). Eight out of the 15 chapters have been led by team members from the NCGC representing six of the eight partner institutions making up this center - Lawrence Berkeley National Laboratory (lead institution, D. DePaolo - PI), Oak Ridge National Laboratory, The Ohio State University, the University of California Davis, Pacific Northwest National Laboratory, and Washington University, St. Louis.

Geological Sequestration of Carbon Dioxide

Geological Sequestration of Carbon Dioxide PDF

Author: Luigi Marini

Publisher: Elsevier

Published: 2006-10-12

Total Pages: 471

ISBN-13: 0080466885

DOWNLOAD EBOOK →

The contents of this monograph are two-scope. First, it intends to provide a synthetic but complete account of the thermodynamic and kinetic foundations on which the reaction path modeling of geological CO2 sequestration is based. In particular, a great effort is devoted to review the thermodynamic properties of CO2 and of the CO2-H2O system and the interactions in the aqueous solution, the thermodynamic stability of solid product phases (by means of several stability plots and activity plots), the volumes of carbonation reactions, and especially the kinetics of dissolution/precipitation reactions of silicates, oxides, hydroxides, and carbonates. Second, it intends to show the reader how reaction path modeling of geological CO2 sequestration is carried out. To this purpose the well-known high-quality EQ3/6 software package is used. Setting up of computer simulations and obtained results are described in detail and used EQ3/6 input files are given to guide the reader step-by-step from the beginning to the end of these exercises. Finally, some examples of reaction-path- and reaction-transport-modeling taken from the available literature are presented. The results of these simulations are of fundamental importance to evaluate the amounts of potentially sequestered CO2, and their evolution with time, as well as the time changes of all the other relevant geochemical parameters (e.g., amounts of solid reactants and products, composition of the aqueous phase, pH, redox potential, effects on aquifer porosity). In other words, in this way we are able to predict what occurs when CO2 is injected into a deep aquifer. * Provides applications for investigating and predicting geological carbon dioxide sequestration * Reviews the geochemical literature in the field * Discusses the importance of geochemists in the multidisciplinary study of geological carbon dioxide sequestration

Geologic Carbon Sequestration

Geologic Carbon Sequestration PDF

Author: V. Vishal

Publisher: Springer

Published: 2016-05-11

Total Pages: 338

ISBN-13: 3319270192

DOWNLOAD EBOOK →

This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO2 Capture Project

Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO2 Capture Project PDF

Author: David C Thomas

Publisher: Elsevier

Published: 2015-01-03

Total Pages: 686

ISBN-13: 0081005016

DOWNLOAD EBOOK →

Over the past decade, the prospect of climate change resulting from anthropogenic CO2 has become a matter of growing public concern. Not only is the reduction of CO2 emissions extremely important, but keeping the cost at a manageable level is a prime priority for companies and the public, alike. The CO2 capture project (CCP) came together with a common goal in mind: find a technological process to capture CO2 emissions that is relatively low-cost and able be to be expanded to industrial applications. The Carbon Dioxide Capture and Storage Project outlines the research and findings of all the participating companies and associations involved in the CCP. The final results of thousands of hours of research are outlined in the book, showing a successful achievement of the CCP’s goals for lower cost CO2 capture technology and furthering the safe, reliable option of geological storage. The Carbon Dioxide Capture and Storage Project is a valuable reference for any scientists, industrialists, government agencies, and companies interested in a safer, more cost-efficient response to the CO2 crisis.

Advances in the Geological Storage of Carbon Dioxide

Advances in the Geological Storage of Carbon Dioxide PDF

Author: S. Lombardi

Publisher: Springer Science & Business Media

Published: 2006-01-02

Total Pages: 360

ISBN-13: 1402044712

DOWNLOAD EBOOK →

As is now generally accepted mankind’s burning of fossil fuels has resulted in the mass transfer of greenhouse gases to the atmosphere, a modification of the delicately-balanced global carbon cycle, and a measurable change in world-wide temperatures and climate. Although not the most powerful greenhouse gas, carbon dioxide (CO) drives climate 2 change due to the enormous volumes of this gas pumped into the atmosphere every day. Produced in almost equal parts by the transportation, industrial and energy-generating sectors, atmospheric CO concentrations have 2 increased by about 50% over the last 300 years, and according to some sources are predicted to increase by up to 200% over pre-industrial levels during the next 100 years. If we are to reverse this trend, in order to prevent significant environmental change in the future, action must be taken immediately. While reduced use of fossil fuels (through conservation, increased efficiency and expanded use of renewable energy sources) must be our ultimate goal, short to medium term solutions are needed which can make an impact today. Various types of CO storage techniques have been proposed to fill this 2 need, with the injection of this gas into deep geological reservoirs being one of the most promising. For example this approach has the potential to become a closed loop system, whereby underground energy resources are brought to surface, their energy extracted (via burning or hydrogen extraction), and the resulting by-products returned to the subsurface.

Carbon Sequestration and Its Role in the Global Carbon Cycle

Carbon Sequestration and Its Role in the Global Carbon Cycle PDF

Author: Brian J. McPherson

Publisher: John Wiley & Sons

Published: 2013-05-02

Total Pages: 865

ISBN-13: 1118671791

DOWNLOAD EBOOK →

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 183. For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: The global carbon cycle and verification and assessment of global carbon sources and sinks Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage Predicting, monitoring, and verifying effectiveness of different forms of carbon storage Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

Geological Carbon Storage

Geological Carbon Storage PDF

Author: Stéphanie Vialle

Publisher: John Wiley & Sons

Published: 2018-11-15

Total Pages: 372

ISBN-13: 1119118670

DOWNLOAD EBOOK →

Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field. Book Review: William R. Green, Patrick Taylor, Sven Treitel, and Moritz Fliedner, (2020), "Reviews," The Leading Edge 39: 214–216 Geological Carbon Storage: Subsurface Seals and Caprock Integrity, edited by Stéphanie Vialle, Jonathan Ajo-Franklin, and J. William Carey, ISBN 978-1-119-11864-0, 2018, American Geophysical Union and Wiley, 364 p., US$199.95 (print), US$159.99 (eBook). This volume is a part of the AGU/Wiley Geophysical Monograph Series. The editors assembled an international team of earth scientists who present a comprehensive approach to the major problem of placing unwanted and/or hazardous fluids beneath a cap rock seal to be impounded. The compact and informative preface depicts the nature of cap rocks and the problems that may occur over time or with a change in the formation of the cap rock. I have excerpted a quote from the preface that describes the scope of the volume in a concise and thorough matter. “Caprocks can be defined as a rock that prevents the flow of a given fluid at certain temperature, pressure, and chemical conditions. ... A fundamental understanding of these units and of their evolution over time in the context of subsurface carbon storage is still lacking.” This volume describes the scope of current research being conducted on a global scale, with 31 of the 83 authors working outside of the United States. The studies vary but can be generalized as monitoring techniques for cap rock integrity and the consequence of the loss of that integrity. The preface ends by calling out important problems that remain to be answered. These include imaging cap rocks in situ, detecting subsurface leaks before they reach the surface, and remotely examining the state of the cap rock to avert any problems. Chapter 3 describes how newer methods are used to classify shale. These advanced techniques reveal previously unknown microscopic properties that complicate classification. This is an example of the more we know, the more we don't know. A sedimentologic study of the formation of shale (by far the major sedimentary rock and an important rock type) is described in Chapter 4. The authors use diagrammatic examples to illustrate how cap rocks may fail through imperfect seal between the drill and wall rock, capillary action, or a structural defect (fault). Also, the shale pore structures vary in size, and this affects the reservoir. There are descriptions of the pore structure in the Eagle Ford and Marcellus shales and several others. Pore structures are analyzed using state-of-the-art ultra-small-angle X-ray or neutron scattering. They determine that the overall porosity decreases nonlinearly with time. There are examples of cap rock performance under an array of diagnostic laboratory analyses and geologic field examples (e.g., Marcellus Formation). The importance of the sequestration of CO2 and other contaminants highlights the significance of this volume. The previous and following chapters illuminate the life history of the lithologic reservoir seal. I would like to call out Chapter 14 in which the authors illustrate the various mechanisms by which a seal can fail and Chapter 15 in which the authors address the general problems of the effect of CO2 sequestration on the environment. They establish a field test, consisting of a trailer and large tank of fluids with numerous monitoring instruments to replicate the effect of a controlled release of CO2-saturated water into a shallow aquifer. This chapter's extensive list of references will be of interest to petroleum engineers, rock mechanics, and environmentalists. The authors of this volume present a broad view of the underground storage of CO2. Nuclear waste and hydrocarbons are also considered for underground storage. There are laboratory, field, and in situ studies covering nearly all aspects of this problem. I cannot remember a study in which so many different earth science resources were applied to a single problem. The span of subjects varies from traditional geochemical analysis with the standard and latest methods in infrared and X-ray techniques, chemical and petroleum engineering, sedimentary mineralogy, hydrology, and geomechanical studies. This volume is essential to anyone working in this field as it brings several disciplines together to produce a comprehensive study of carbon sequestration. While the volume is well illustrated, there is a lack of color figures. Each chapter should have at least two color figures, or there should be several pages of color figures bound in the center of the volume. Many of the figures would be more meaningful if they had been rendered in color. Also, the acronyms are defined in the individual chapters, but it would be helpful to have a list of acronyms after the extensive index. I recommend this monograph to all earth scientists but especially petroleum engineers, structural geologists, mineralogists, and environmental scientists. Since these chapters cover a broad range of studies, it would be best if the reader has a broad background. — Patrick Taylor Davidsonville, Maryland

Geological Carbon Storage

Geological Carbon Storage PDF

Author: Stéphanie Vialle

Publisher: John Wiley & Sons

Published: 2018-11-12

Total Pages: 364

ISBN-13: 1119118662

DOWNLOAD EBOOK →

Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field.

Science of Carbon Storage in Deep Saline Formations

Science of Carbon Storage in Deep Saline Formations PDF

Author: Pania Newell

Publisher: Elsevier

Published: 2018-09-06

Total Pages: 447

ISBN-13: 0128127538

DOWNLOAD EBOOK →

Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage. Includes the underlying scientific research, as well as the risks associated with geological carbon storage Covers the topic of geological carbon storage from various disciplines, addressing the multi-scale and multi-physics aspects of geological carbon storage Organized by discipline for ease of navigation