Genetics and Genomics of Papaya

Genetics and Genomics of Papaya PDF

Author: Ray Ming

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 433

ISBN-13: 1461480876

DOWNLOAD EBOOK →

This book reviews various aspects of papaya genomics, including existing genetic and genomic resources, recent progress on structural and functional genomics, and their applications in papaya improvement. Organized into four sections, the volume explores the origin and domestication of papaya, classic genetics and breeding, recent progress on molecular genetics, and current and future applications of genomic resources for papaya improvement. Bolstered by contributions from authorities in the field, Genetics and Genomics of Papaya is a valuable resource that provides the most up to date information for papaya researchers and plant biologists.

Genomics of Tropical Crop Plants

Genomics of Tropical Crop Plants PDF

Author: Paul H. Moore

Publisher: Springer Science & Business Media

Published: 2008-01-03

Total Pages: 592

ISBN-13: 0387712194

DOWNLOAD EBOOK →

For a long time there has been a critical need for a book to assess the genomics of tropical plant species. At last, here it is. This brilliant book covers recent progress on genome research in tropical crop plants, including the development of molecular markers, and many more subjects. The first section provides information on crops relevant to tropical agriculture. The book then moves on to lay out summaries of genomic research for the most important tropical crop plant species.

Genetics and Genomics of Pineapple

Genetics and Genomics of Pineapple PDF

Author: Ray Ming

Publisher: Springer

Published: 2018-11-27

Total Pages: 281

ISBN-13: 303000614X

DOWNLOAD EBOOK →

This book is the first comprehensive volume on the genetics and genomics of pineapple and provides an overview of the current state of pineapple research. Pineapple [Ananas comosus (L.) Merr.] is the second most important tropical fruit after banana in term of international trade. Its features are advantageous for genomic research: it has a small genome of 527 Mb which is diploid and vegetatively propagated; it is monocot, closely related to the grass family that includes major cereal crops, wheat, rice, corn, sorghum, and millet; and it serves as an out group for genetic and genomic research in grasses. In addition to exploring the evolution and improvement of pineapple, this work examines the pineapple genome with respect to genome structure and organization, comparative analyses with other angiosperm genomes, transcription factors, disease resistance, and circadian clock regulation of CAM related genes. With chapters covering botanical, genetic, genomic, and applied aspects of pineapple, this text also encourages the application of genomic technologies and suggests future prospects.

Molecular and Metabolic Mechanisms Associated with Fleshy Fruit Quality

Molecular and Metabolic Mechanisms Associated with Fleshy Fruit Quality PDF

Author: Ana M. Fortes

Publisher: Frontiers Media SA

Published: 2017-09-08

Total Pages: 438

ISBN-13: 2889452727

DOWNLOAD EBOOK →

Fleshy Fruits are a late acquisition of plant evolution. In addition of protecting the seeds, these specialized organs unique to plants were developed to promote seed dispersal via the contribution of frugivorous animals. Fruit development and ripening is a complex process and understanding the underlying genetic and molecular program is a very active field of research. Part of the ripening process is directed to build up quality traits such as color, texture and aroma that make the fruit attractive and palatable. As fruit consumers, humans have developed a time long interaction with fruits which contributed to make the fruit ripening attributes conform our needs and preferences. This issue of Frontiers in Plant Science is intended to cover the most recent advances in our understanding of different aspects of fleshy fruit biology, including the genetic, molecular and metabolic mechanisms associated to each of the fruit quality traits. It is also of prime importance to consider the effects of environmental cues, cultural practices and postharvest methods, and to decipher the mechanism by which they impact fruit quality traits. Most of our knowledge of fleshy fruit development, ripening and quality traits comes from work done in a reduced number of species that are not only of economic importance but can also benefit from a number of genetic and genomic tools available to their specific research communities. For instance, working with tomato and grape offers several advantages since the genome sequences of these two fleshy fruit species have been deciphered and a wide range of biological and genetic resources have been developed. Ripening mutants are available for tomato which constitutes the main model system for fruit functional genomics. In addition, tomato is used as a reference species for climacteric fruit which ripening is controlled by the phytohormone ethylene. Likewise, grape is a reference species for non-climacteric fruit even though no single master switches controlling ripening initiation have been uncovered yet. In the last period, the genome sequence of an increased number of fruit crop species became available which creates a suitable situation for research communities around crops to get organized and information to be shared through public repositories. On the other hand, the availability of genome-wide expression profiling technologies has enabled an easier study of global transcriptional changes in fruit species where the sequenced genome is not yet available. In this issue authors will present recent progress including original data as well as authoritative reviews on our understanding of fleshy fruit biology focusing on tomato and grape as model species.

Genetic Engineering of Horticultural Crops

Genetic Engineering of Horticultural Crops PDF

Author: Gyana Ranjan Rout

Publisher: Academic Press

Published: 2018-01-08

Total Pages: 466

ISBN-13: 0128104406

DOWNLOAD EBOOK →

Genetic Engineering of Horticultural Crops provides key insights into commercialized crops, their improved productivity, disease and pest resistance, and enhanced nutritional or medicinal benefits. It includes insights into key technologies, such as marker traits identification and genetic traits transfer for increased productivity, examining the latest transgenic advances in a variety of crops and providing foundational information that can be applied to new areas of study. As modern biotechnology has helped to increase crop productivity by introducing novel gene(s) with high quality disease resistance and increased drought tolerance, this is an ideal resource for researchers and industry professionals. Provides examples of current technologies and methodologies, addressing abiotic and biotic stresses, pest resistance and yield improvement Presents protocols on plant genetic engineering in a variety of wide-use crops Includes biosafety rule regulation of genetically modified crops in the USA and third world countries

Molecular and Metabolic Mechanisms Associated with Fleshy Fruit Quality

Molecular and Metabolic Mechanisms Associated with Fleshy Fruit Quality PDF

Author:

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK →

Fleshy Fruits are a late acquisition of plant evolution. In addition of protecting the seeds, these specialized organs unique to plants were developed to promote seed dispersal via the contribution of frugivorous animals. Fruit development and ripening is a complex process and understanding the underlying genetic and molecular program is a very active field of research. Part of the ripening process is directed to build up quality traits such as color, texture and aroma that make the fruit attractive and palatable. As fruit consumers, humans have developed a time long interaction with fruits which contributed to make the fruit ripening attributes conform our needs and preferences. This issue of Frontiers in Plant Science is intended to cover the most recent advances in our understanding of different aspects of fleshy fruit biology, including the genetic, molecular and metabolic mechanisms associated to each of the fruit quality traits. It is also of prime importance to consider the effects of environmental cues, cultural practices and postharvest methods, and to decipher the mechanism by which they impact fruit quality traits. Most of our knowledge of fleshy fruit development, ripening and quality traits comes from work done in a reduced number of species that are not only of economic importance but can also benefit from a number of genetic and genomic tools available to their specific research communities. For instance, working with tomato and grape offers several advantages since the genome sequences of these two fleshy fruit species have been deciphered and a wide range of biological and genetic resources have been developed. Ripening mutants are available for tomato which constitutes the main model system for fruit functional genomics. In addition, tomato is used as a reference species for climacteric fruit which ripening is controlled by the phytohormone ethylene. Likewise, grape is a reference species for non-climacteric fruit even though no single master switches controlling ripening initiation have been uncovered yet. In the last period, the genome sequence of an increased number of fruit crop species became available which creates a suitable situation for research communities around crops to get organized and information to be shared through public repositories. On the other hand, the availability of genome-wide expression profiling technologies has enabled an easier study of global transcriptional changes in fruit species where the sequenced genome is not yet available. In this issue authors will present recent progress including original data as well as authoritative reviews on our understanding of fleshy fruit biology focusing on tomato and grape as model species.

Plant Breeding: Past, Present and Future

Plant Breeding: Past, Present and Future PDF

Author: John E. Bradshaw

Publisher: Springer

Published: 2016-03-08

Total Pages: 693

ISBN-13: 3319232851

DOWNLOAD EBOOK →

This book aims to help plant breeders by reviewing past achievements, currently successful practices, and emerging methods and techniques. Theoretical considerations are also presented to strike the right balance between being as simple as possible but as complex as necessary. The United Nations predicts that the global human population will continue rising to 9.0 billion by 2050. World food production will need to increase between 70-100 per cent in just 40 years. First generation bio-fuels are also using crops and cropland to produce energy rather than food. In addition, land area used for agriculture may remain static or even decrease as a result of degradation and climate change, despite more land being theoretically available, unless crops can be bred which tolerate associated abiotic stresses. Lastly, it is unlikely that steps can be taken to mitigate all of the climate change predicted to occur by 2050, and beyond, and hence adaptation of farming systems and crop production will be required to reduce predicted negative effects on yields that will occur without crop adaptation. Substantial progress will therefore be required in bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, with the best farming methods and best storage and transportation of food, given the availability of suitably adapted cultivars, including adaptation to climate change. My book is divided into four parts: Part I is an historical introduction; Part II deals with the origin of genetic variation by mutation and recombination of DNA; Part III explains how the mating system of a crop species determines the genetic structure of its landraces; Part IV considers the three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops.

Antioxidants and Antioxidant Enzymes in Higher Plants

Antioxidants and Antioxidant Enzymes in Higher Plants PDF

Author: Dharmendra K. Gupta

Publisher: Springer

Published: 2018-03-10

Total Pages: 300

ISBN-13: 3319750887

DOWNLOAD EBOOK →

This book provides an overview of antioxidants and antioxidant enzymes and their role in the mechanisms of signaling and cellular tolerance under stress in plant systems. Major reactive oxygen species (ROS)-scavenging/modulating enzymes include the superoxide dismutase (SOD) that dismutates O2 into H2O2, which is followed by the coordinated action of a set of enzymes including catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and peroxiredoxins (Prx) that remove H2O2. In addition to the ROS scavenging enzymes, a number of other enzymes are found in various subcellular compartments, which are involved in maintaining such redox homeostasis either by directly scavenging particular ROS and ROS-byproducts or by replenishing antioxidants. In that respect, these enzymes can be also considered antioxidants. Such enzymes include monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), alternative oxidases (AOXs), peroxidases (PODs) and glutathione S-transferases (GSTs). Some non-enzymatic antioxidants, such as ascorbic acid (vitamin C), carotenes (provitamin A), tocopherols (vitamin E), and glutathione (GSH), work in concert with antioxidant enzymes to sustain an intracellular steady-state level of ROS that promotes plant growth, development, cell cycles and hormone signaling, and reinforces the responses to abiotic and biotic environmental stressors. Offering a unique compilation of information on antioxidants and antioxidant enzymes, this is a valuable resource for advanced students and researchers working on plant biochemistry, physiology, biotechnology, and signaling in cell organelles, and those specializing in plant enzyme technology.

Plant Genomes

Plant Genomes PDF

Author: Jean-Nicolas Volff

Publisher: Karger Medical and Scientific Publishers

Published: 2008-01-01

Total Pages: 155

ISBN-13: 3805584911

DOWNLOAD EBOOK →

Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.