GaN Transistor Modeling for RF and Power Electronics

GaN Transistor Modeling for RF and Power Electronics PDF

Author: Yogesh Singh Chauhan

Publisher: Elsevier

Published: 2024-05-31

Total Pages: 262

ISBN-13: 0323999409

DOWNLOAD EBOOK →

GaN Transistor Modeling for RF and Power Electronics: Using The ASM-GaN-HEMT Model covers all aspects of characterization and modeling of GaN transistors for both RF and Power electronics applications. Chapters cover an in-depth analysis of the industry standard compact model ASM-HEMT for GaN transistors. The book details the core surface-potential calculations and a variety of real device effects, including trapping, self-heating, field plate effects, and more to replicate realistic device behavior. The authors also include chapters on step-by-step parameter extraction procedures for the ASM-HEMT model and benchmark test results. GaN is the fastest emerging technology for RF circuits as well as power electronics. This technology is going to grow at an exponential rate over the next decade. This book is envisioned to serve as an excellent reference for the emerging GaN technology, especially for circuit designers, materials science specialists, device engineers and academic researchers and students. This book provides an overview of the operation and physics of GaN-based transistors All aspects of the ASM-HEMT model for GaN circuits, an industry standard model, are described in depth by the developers of the model Parameter extraction of GaN devices and measurement data requirements for GaN model extraction are detailed

Advanced SPICE Model for GaN HEMTs (ASM-HEMT)

Advanced SPICE Model for GaN HEMTs (ASM-HEMT) PDF

Author: Sourabh Khandelwal

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 194

ISBN-13: 3030777308

DOWNLOAD EBOOK →

This book discusses in detail the Advanced SPICE Model for GaN HEMTs (ASM-HEMT), a new industry standard model for GaN-based power and RF circuit design. The author describes this new, standard model in detail, covering the different components of the ASM GaN model from fundamental derivations to the implementation in circuit simulation tools. The book also includes a detailed description of parameter extraction steps and model quality tests, which are critically important for effective use of this standard model in circuit simulation and product design. Coverage includes both radio-frequency (RF), and power electronics applications of this model. Practical issues related to measurement data and parameter extraction flow are also discussed, enabling readers easily to adopt this new model for design flow and simulation tools. Describes in detail a new industry standard for GaN-based power and RF circuit design; Includes discussion of practical problems and their solutions in GaN device modeling; Covers both radio-frequency (RF) and power electronics application of GaN technology; Describes modeling of both GaN RF and power devices.

GaN Transistors for Efficient Power Conversion

GaN Transistors for Efficient Power Conversion PDF

Author: Alex Lidow

Publisher: John Wiley & Sons

Published: 2019-08-12

Total Pages: 470

ISBN-13: 1119594421

DOWNLOAD EBOOK →

An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.

Power GaN Devices

Power GaN Devices PDF

Author: Matteo Meneghini

Publisher: Springer

Published: 2016-09-08

Total Pages: 380

ISBN-13: 3319431994

DOWNLOAD EBOOK →

This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.

GaN Transistors for Efficient Power Conversion

GaN Transistors for Efficient Power Conversion PDF

Author: Alex Lidow

Publisher: John Wiley & Sons

Published: 2014-09-15

Total Pages: 266

ISBN-13: 1118844769

DOWNLOAD EBOOK →

Gallium nitride (GaN) is an emerging technology that promises to displace silicon MOSFETs in the next generation of power transistors. As silicon approaches its performance limits, GaN devices offer superior conductivity and switching characteristics, allowing designers to greatly reduce system power losses, size, weight, and cost. This timely second edition has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. With higher-frequency switching capabilities, GaN devices offer the chance to increase efficiency in existing applications such as DC–DC conversion, while opening possibilities for new applications including wireless power transfer and envelope tracking. This book is an essential learning tool and reference guide to enable power conversion engineers to design energy-efficient, smaller and more cost-effective products using GaN transistors. Key features: Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications. Contains useful discussions on device–circuit interactions, which are highly valuable since the new and high performance GaN power transistors require thoughtfully designed drive/control circuits in order to fully achieve their performance potential. Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors – see companion website for further details. A valuable learning resource for professional engineers and systems designers needing to fully understand new devices as well as electrical engineering students.

HEMT Technology and Applications

HEMT Technology and Applications PDF

Author: Trupti Ranjan Lenka

Publisher: Springer Nature

Published: 2022-06-23

Total Pages: 246

ISBN-13: 9811921652

DOWNLOAD EBOOK →

This book covers two broad domains: state-of-the-art research in GaN HEMT and Ga2O3 HEMT. Each technology covers materials system, band engineering, modeling and simulations, fabrication techniques, and emerging applications. The book presents basic operation principles of HEMT, types of HEMT structures, and semiconductor device physics to understand the device behavior. The book presents numerical modeling of the device and TCAD simulations for high-frequency and high-power applications. The chapters include device characteristics of HEMT including 2DEG density, Id-Vgs, Id-Vds, transconductance, linearity, and C-V. The book emphasizes the state-of-the-art fabrication techniques of HEMT and circuit design for various applications in low noise amplifier, oscillator, power electronics, and biosensor applications. The book focuses on HEMT applications to meet the ever-increasing demands of the industry, innovation in terms of materials, design, modeling, simulation, processes, and circuits. The book will be primarily helpful to undergraduate/postgraduate, researchers, and practitioners in their research.

III-Nitride Electronic Devices

III-Nitride Electronic Devices PDF

Author:

Publisher: Academic Press

Published: 2019-10-18

Total Pages: 546

ISBN-13: 0128175451

DOWNLOAD EBOOK →

III-Nitride Electronic Devices, Volume 102, emphasizes two major technical areas advanced by this technology: radio frequency (RF) and power electronics applications. The range of topics covered by this book provides a basic understanding of materials, devices, circuits and applications while showing the future directions of this technology. Specific chapters cover Electronic properties of III-nitride materials and basics of III-nitride HEMT, Epitaxial growth of III-nitride electronic devices, III-nitride microwave power transistors, III-nitride millimeter wave transistors, III-nitride lateral transistor power switch, III-nitride vertical devices, Physics-Based Modeling, Thermal management in III-nitride HEMT, RF/Microwave applications of III-nitride transistor/wireless power transfer, and more. Presents a complete review of III-Nitride electronic devices, from fundamental physics, to applications in two key technical areas – RF and power electronics Outlines fundamentals, reviews state-of-the-art circuits and applications, and introduces current and emerging technologies Written by a panel of academic and industry experts in each field

Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion PDF

Author: Gaudenzio Meneghesso

Publisher: Springer

Published: 2018-05-12

Total Pages: 232

ISBN-13: 331977994X

DOWNLOAD EBOOK →

This book demonstrates to readers why Gallium Nitride (GaN) transistors have a superior performance as compared to the already mature Silicon technology. The new GaN-based transistors here described enable both high frequency and high efficiency power conversion, leading to smaller and more efficient power systems. Coverage includes i) GaN substrates and device physics; ii) innovative GaN -transistors structure (lateral and vertical); iii) reliability and robustness of GaN-power transistors; iv) impact of parasitic on GaN based power conversion, v) new power converter architectures and vi) GaN in switched mode power conversion. Provides single-source reference to Gallium Nitride (GaN)-based technologies, from the material level to circuit level, both for power conversions architectures and switched mode power amplifiers; Demonstrates how GaN is a superior technology for switching devices, enabling both high frequency, high efficiency and lower cost power conversion; Enables design of smaller, cheaper and more efficient power supplies.

Device Characterization and Modeling of Large-Size GaN HEMTs

Device Characterization and Modeling of Large-Size GaN HEMTs PDF

Author: Jaime Alberto Zamudio Flores

Publisher: kassel university press GmbH

Published: 2012-08-21

Total Pages: 257

ISBN-13: 3862193640

DOWNLOAD EBOOK →

This work presents a comprehensive modeling strategy for advanced large-size AlGaN/GaN HEMTs. A 22-element equivalent circuit with 12 extrinsic elements, including 6 capacitances, serves as small-signal model and as basis for a large-signal model. ANalysis of such capacitances leads to original equations, employed to form capacitance ratios. BAsic assumptions of existing parameter extractions for 22-element equivalent circuits are perfected: A) Required capacitance ratios are evaluated with device's top-view images. B) Influences of field plates and source air-bridges on these ratios are considered. The large-signal model contains a gate charge's non-quasi-static model and a dispersive-IDS model. THe extrinsic-to-intrinsic voltage transformation needed to calculate non-quasi-static parameters from small-signal parameters is improved with a new description for the measurement's boundary bias points. ALl IDS-model parameters, including time constants of charge-trapping and self-heating, are extracted using pulsed-DC IV and IDS-transient measurements, highlighting the modeling strategy's empirical character.