Fundamentals of Semiconductor Devices

Fundamentals of Semiconductor Devices PDF

Author: Richard L. Anderson

Publisher: McGraw-Hill Education

Published: 2004-03-12

Total Pages: 816

ISBN-13: 9780072369779

DOWNLOAD EBOOK →

Fundamentals of Semiconductor Devices provides a realistic and practical treatment of modern semiconductor devices. A solid understanding of the physical processes responsible for the electronic properties of semiconductor materials and devices is emphasized. With this emphasis, the reader will appreciate the underlying physics behind the equations derived and their range of applicability. The author’s clear writing style, comprehensive coverage of the core material, and attention to current topics are key strengths of this book.

Fundamentals of Semiconductors

Fundamentals of Semiconductors PDF

Author: Peter YU

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 651

ISBN-13: 3540264752

DOWNLOAD EBOOK →

Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices PDF

Author: B. Jayant Baliga

Publisher: Springer

Published: 2018-09-28

Total Pages: 1086

ISBN-13: 3319939882

DOWNLOAD EBOOK →

Fundamentals of Power Semiconductor Devices provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown. The treatment here focuses on silicon devices but includes the unique attributes and design requirements for emerging silicon carbide devices. The book will appeal to practicing engineers in the power semiconductor device community.

Fundamentals of Semiconductor Physics and Devices

Fundamentals of Semiconductor Physics and Devices PDF

Author: Rolf Enderlein

Publisher: World Scientific

Published: 1997-02-27

Total Pages: 792

ISBN-13: 9814499951

DOWNLOAD EBOOK →

This book is an introduction to the principles of semiconductor physics, linking its scientific aspects with practical applications. It is addressed to both readers who wish to learn semiconductor physics and those seeking to understand semiconductor devices. It is particularly well suited for those who want to do both. Intended as a teaching vehicle, the book is written in an expository manner aimed at conveying a deep and coherent understanding of the field. It provides clear and complete derivations of the basic concepts of modern semiconductor physics. The mathematical arguments and physical interpretations are well balanced: they are presented in a measure designed to ensure the integrity of the delivery of the subject matter in a fully comprehensible form. Experimental procedures and measured data are included as well. The reader is generally not expected to have background in quantum mechanics and solid state physics beyond the most elementary level. Nonetheless, the presentation of this book is planned to bring the student to the point of research/design capability as a scientist or engineer. Moreover, it is sufficiently well endowed with detailed knowledge of the field, including recent developments bearing on submicron semiconductor structures, that the book also constitutes a valuable reference resource. In Chapter 1, basic features of the atomic structures, chemical nature and the macroscopic properties of semiconductors are discussed. The band structure of ideal semiconductor crystals is treated in Chapter 2, together with the underlying one-electron picture and other fundamental concepts. Chapter 2 also provides the requisite background of the tight binding method and the k.p-method, which are later used extensively. The electron states of shallow and deep centers, clean semiconductor surfaces, quantum wells and superlattices, as well as the effects of external electric and magnetic fields, are treated in Chapter 3. The one- or multi-band effective mass theory is used wherever this method is applicable. A summary of group theory for application in semiconductor physics is given in an Appendix. Chapter 4 deals with the statistical distribution of charge carriers over the band and localized states in thermodynamic equilibrium. Non-equilibrium processes in semiconductors are treated in Chapter 5. The physics of semiconductor junctions (pn-, hetero-, metal-, and insulator-) is developed in Chapter 6 under conditions of thermodynamic equilibrium, and in Chapter 7 under non-equilibrium conditions. On this basis, the most important electronic and opto-electronic semiconductor devices are treated, among them uni- and bi-polar transistors, photodetectors, solar cells, and injection lasers. A summary of group theory for applications in semiconductors is given in an Appendix. Contents:Characterization of SemiconductorsElectronic Structure of Ideal CrystalsElectronic Structure of Semiconductor Crystals with PerturbationsElectron System in Thermodynamic EquilibriumNon-Equilibrium Processes in SemiconductorsSemiconductor Junctions in Thermodynamic EquilibriumSemiconductor Junctions Under Non-Equilibrium Conditions Readership: Undergraduates, graduates and researchers in the fields of physics and engineering. keywords:Semiconductors;Transistor;Devices;Heterojunctions;Microstructures;Band-Structure;Luttinger-Kohn-Model;Kane-Model;Deep-Levels;Transport;Semiconductor Physics;Fundamental Physical Phenomena;General Backround;Characterization of Semiconductor;Electronic Structur of Semiconductors;Semiconductor Junctions the Thermodynamic Equilibrium;Semiconductor Junctions Under Non-Equilibrium Conductions; “… The reader who has only a first acquaintance with semiconductor physics will find that this book has fully detailed explanations of the fundamental physical phenomena, providing a good general background … A brilliant discussion of artifical atomic superstructures of nanometer length scale establishes a link to the most active field of semiconductor physics … In my opinion the book of R Enderlein and N J M Horing Fundamentals of Semiconductor Physics and Devices is a valuable contribution to the modern didactic literature on the physics of semiconductors. Morever, it is of considerable value as a reference for specialists as well.” J T Devreese Professor at the Physics Department University of Antwerpen, Belgium “In Fundamentals of Semiconductor Physics and Devices, R Enderiein and N J M Horing have provided a very extensive and detailed text on the physics underlying semiconductor devices. More so than any other current text, this book provides a greatly expanded discussion of modern tight-binding methods, helping the students to understand these aspects of electronic structure in clear, simple terms. In connection with this the authors offer a very detailed discussion of deep levels in semiconductors, which are so important to semiconducting properties. Also, in the discussion of transport properties, the book goes into much greater depth about nonlinear and nonequilibrium processes than is usual. It is quite a unique contribution, containing the basic physics which tends to be missing from device-oriented books, but going much further into the essentials needed for device development than any solid-state-physics text.” Walter A Harrison Professor of Applied Physics Stanford University, USA

Physics of Semiconductor Devices

Physics of Semiconductor Devices PDF

Author: J.-P. Colinge

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 442

ISBN-13: 0306476223

DOWNLOAD EBOOK →

Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.

Semiconductor Devices

Semiconductor Devices PDF

Author: Jasprit Singh

Publisher: John Wiley & Sons

Published: 2000-08-03

Total Pages: 583

ISBN-13: 047136245X

DOWNLOAD EBOOK →

From physical process to practical applications - Singh makes the complexities of modern semiconductor devices clear! The semiconductor devices that are driving today's information, technologies may seem remarkably complex, but they don't have to be impossible to understand. Filled with figures, flowcharts, and solved examples, Jasprit Singh's Semiconductor Devices provides an accessible, well-balanced introduction to semiconductor physics and its application to modern devices. Beginning with the physical process behind semiconductor devices, Singh clearly explains difficult topics, including bandstructure, effective masses, holes, doping, carrier transport, and lifetimes. Following these physical fundamentals, you'll explore the operation of important semiconductor devices, such as diodes, transistors, light emitters, and detectors, along with issues relating to the optimization of device performance. Features Over 150 solved examples, integrated throughout the text, clarify difficult concepts. End-of-chapter summary tables and hundreds of figures reinforce the intricacies of modern semiconductor devices. Discussion of device optimization issues explains why you have to trade one performance against another in devices. Shows the relationship of physical parameters to SPICE parameters and its impact on circuit issues. Technology Roadmaps outline what's currently happening in the field and present a look at where device technology is headed in the future. A Bit of History sections, included in each chapter, explore the history of the concepts developed and provide a snapshot of the personalities involved and the challenges of the time.

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices PDF

Author: B. Jayant Baliga

Publisher: Springer Science & Business Media

Published: 2010-04-02

Total Pages: 1085

ISBN-13: 0387473149

DOWNLOAD EBOOK →

Fundamentals of Power Semiconductor Devices provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown. The treatment here focuses on silicon devices but includes the unique attributes and design requirements for emerging silicon carbide devices. The book will appeal to practicing engineers in the power semiconductor device community.

Fundamentals of Semiconductor Manufacturing and Process Control

Fundamentals of Semiconductor Manufacturing and Process Control PDF

Author: Gary S. May

Publisher: John Wiley & Sons

Published: 2006-05-26

Total Pages: 428

ISBN-13: 0471790273

DOWNLOAD EBOOK →

A practical guide to semiconductor manufacturing from processcontrol to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Controlcovers all issues involved in manufacturing microelectronic devicesand circuits, including fabrication sequences, process control,experimental design, process modeling, yield modeling, and CIM/CAMsystems. Readers are introduced to both the theory and practice ofall basic manufacturing concepts. Following an overview of manufacturing and technology, the textexplores process monitoring methods, including those that focus onproduct wafers and those that focus on the equipment used toproduce wafers. Next, the text sets forth some fundamentals ofstatistics and yield modeling, which set the foundation for adetailed discussion of how statistical process control is used toanalyze quality and improve yields. The discussion of statistical experimental design offers readers apowerful approach for systematically varying controllable processconditions and determining their impact on output parameters thatmeasure quality. The authors introduce process modeling concepts,including several advanced process control topics such asrun-by-run, supervisory control, and process and equipmentdiagnosis. Critical coverage includes the following: * Combines process control and semiconductor manufacturing * Unique treatment of system and software technology and managementof overall manufacturing systems * Chapters include case studies, sample problems, and suggestedexercises * Instructor support includes electronic copies of the figures andan instructor's manual Graduate-level students and industrial practitioners will benefitfrom the detailed exami?nation of how electronic materials andsupplies are converted into finished integrated circuits andelectronic products in a high-volume manufacturingenvironment. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment. An Instructor Support FTP site is also available.

Introduction to Semiconductor Devices

Introduction to Semiconductor Devices PDF

Author: Kevin F. Brennan

Publisher: Cambridge University Press

Published: 2005-02-03

Total Pages: 340

ISBN-13: 9781139473811

DOWNLOAD EBOOK →

From semiconductor fundamentals to semiconductor devices used in the telecommunications and computing industries, this 2005 book provides a solid grounding in the most important devices used in the hottest areas of electronic engineering. The book includes coverage of future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductors. Next, the field effect devices are described, including MODFETs and MOSFETs. Short channel effects and the challenges faced by continuing miniaturisation are then addressed. The rest of the book discusses the structure, behaviour, and operating requirements of semiconductor devices used in lightwave and wireless telecommunications systems. This is both an excellent senior/graduate text, and a valuable reference for engineers and researchers in the field.

Semiconductor Devices

Semiconductor Devices PDF

Author: James Fiore

Publisher:

Published: 2017-05-11

Total Pages: 407

ISBN-13: 9781796543537

DOWNLOAD EBOOK →

Across 15 chapters, Semiconductor Devices covers the theory and application of discrete semiconductor devices including various types of diodes, bipolar junction transistors, JFETs, MOSFETs and IGBTs. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. Focusing on practical aspects of analysis and design, interpretations of device data sheets are integrated throughout the chapters. Computer simulations of circuit responses are included as well. Each chapter features a set of learning objectives, numerous sample problems, and a variety of exercises designed to hone and test circuit design and analysis skills. A companion laboratory manual is available. This is the print version of the on-line OER.