Fundamentals of Matrix Computations

Fundamentals of Matrix Computations PDF

Author: David S. Watkins

Publisher:

Published: 1991-01-16

Total Pages: 476

ISBN-13:

DOWNLOAD EBOOK →

The use of numerical methods continues to expand rapidly. At their heart lie matrix computations. Written in a clear, expository style, it allows students and professionals to build confidence in themselves by putting the theory behind matrix computations into practice instantly. Algorithms that allow students to work examples and write programs introduce each chapter. The book then moves on to discuss more complicated theoretical material. Using a step-by-step approach, it introduces mathematical material only as it is needed. Exercises range from routine computations and verifications to extensive programming projects and challenging proofs.

Applied Numerical Linear Algebra

Applied Numerical Linear Algebra PDF

Author: James W. Demmel

Publisher: SIAM

Published: 1997-08-01

Total Pages: 426

ISBN-13: 0898713897

DOWNLOAD EBOOK →

This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.

Matrix Methods in Data Mining and Pattern Recognition

Matrix Methods in Data Mining and Pattern Recognition PDF

Author: Lars Elden

Publisher: SIAM

Published: 2007-07-12

Total Pages: 226

ISBN-13: 0898716268

DOWNLOAD EBOOK →

Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.

Structured Matrices and Polynomials

Structured Matrices and Polynomials PDF

Author: Victor Y. Pan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 299

ISBN-13: 1461201292

DOWNLOAD EBOOK →

This user-friendly, engaging textbook makes the material accessible to graduate students and new researchers who wish to study the rapidly exploding area of computations with structured matrices and polynomials. The book goes beyond research frontiers and, apart from very recent research articles, includes previously unpublished results.

Matrix Computations

Matrix Computations PDF

Author: Gene H. Golub

Publisher: JHU Press

Published: 1996-10-15

Total Pages: 734

ISBN-13: 9780801854149

DOWNLOAD EBOOK →

Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.

Matrix Computations and Semiseparable Matrices

Matrix Computations and Semiseparable Matrices PDF

Author: Raf Vandebril

Publisher: JHU Press

Published: 2008-01-14

Total Pages: 594

ISBN-13: 0801896797

DOWNLOAD EBOOK →

In recent years several new classes of matrices have been discovered and their structure exploited to design fast and accurate algorithms. In this new reference work, Raf Vandebril, Marc Van Barel, and Nicola Mastronardi present the first comprehensive overview of the mathematical and numerical properties of the family's newest member: semiseparable matrices. The text is divided into three parts. The first provides some historical background and introduces concepts and definitions concerning structured rank matrices. The second offers some traditional methods for solving systems of equations involving the basic subclasses of these matrices. The third section discusses structured rank matrices in a broader context, presents algorithms for solving higher-order structured rank matrices, and examines hybrid variants such as block quasiseparable matrices. An accessible case study clearly demonstrates the general topic of each new concept discussed. Many of the routines featured are implemented in Matlab and can be downloaded from the Web for further exploration.

Matrix Algebra Using MINimal MATlab

Matrix Algebra Using MINimal MATlab PDF

Author: Joel W. Robbin

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 560

ISBN-13: 1439864772

DOWNLOAD EBOOK →

The strength of this textbook lies in the careful exposition of mathematical thinking, basic set-theoretic notions, and proof techniques combined with contemporary numerical methods used throughout the book. A basic version of computer programs compatible with the widely used program MatLab, and exercises are provided on a disk included with the book.Warmup * Matrix Operations * Invertible Matrices * Subspaces * Rank and Dimension * Geometry * Determinants-I * Diagonalization * Differential Equations * Hermitian Matrices * Triangular Matrices * Unitary Matrices * Block Diagonalization * Jordan Normal Form * Determinants-II * Proofs * Mathematical Induction†* Summary of MINIMAT * Answers * MINIMAT Tutorial (PC Version)

Polynomial and Matrix Computations

Polynomial and Matrix Computations PDF

Author: Dario Bini

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 433

ISBN-13: 1461202655

DOWNLOAD EBOOK →

Our Subjects and Objectives. This book is about algebraic and symbolic computation and numerical computing (with matrices and polynomials). It greatly extends the study of these topics presented in the celebrated books of the seventies, [AHU] and [BM] (these topics have been under-represented in [CLR], which is a highly successful extension and updating of [AHU] otherwise). Compared to [AHU] and [BM] our volume adds extensive material on parallel com putations with general matrices and polynomials, on the bit-complexity of arithmetic computations (including some recent techniques of data compres sion and the study of numerical approximation properties of polynomial and matrix algorithms), and on computations with Toeplitz matrices and other dense structured matrices. The latter subject should attract people working in numerous areas of application (in particular, coding, signal processing, control, algebraic computing and partial differential equations). The au thors' teaching experience at the Graduate Center of the City University of New York and at the University of Pisa suggests that the book may serve as a text for advanced graduate students in mathematics and computer science who have some knowledge of algorithm design and wish to enter the exciting area of algebraic and numerical computing. The potential readership may also include algorithm and software designers and researchers specializing in the design and analysis of algorithms, computational complexity, alge braic and symbolic computing, and numerical computation.