Fully Implicit, Coupled Procedures in Computational Fluid Dynamics

Fully Implicit, Coupled Procedures in Computational Fluid Dynamics PDF

Author: Zeka Mazhar

Publisher: Springer

Published: 2016-02-08

Total Pages: 173

ISBN-13: 331929895X

DOWNLOAD EBOOK →

This book introduces a new generation of superfast algorithms for the treatment of the notoriously difficult velocity-pressure coupling problem in incompressible fluid flow solutions. It provides all the necessary details for the understanding and implementation of the procedures. The derivation and construction of the fully-implicit, block-coupled, incomplete decomposition mechanism are given in a systematic, but easy fashion. Worked-out solutions are included, with comparisons and discussions. A complete program code is included for faster implementation of the algorithm. A brief literature review of the development of the classical solution procedures is included as well.

Elements of Computational Fluid Dynamics

Elements of Computational Fluid Dynamics PDF

Author: John D. Ramshaw

Publisher: World Scientific

Published: 2011

Total Pages: 140

ISBN-13: 1848167059

DOWNLOAD EBOOK →

This book is a brief introduction to the fundamental concepts of computational fluid dynamics (CFD). It is addressed to beginners, and presents the ABC's or bare essentials of CFD in their simplest and most transparent form. The approach taken is to describe the principal analytical tools required, including truncation-error and stability analyses, followed by the basic elements or building blocks of CFD, which are numerical methods for treating sources, diffusion, convection, and pressure waves. Finally, it is shown how those ingredients may be combined to obtain self-contained numerical methods for solving the full equations of fluid dynamics. The book should be suitable for self-study, as a textbook for CFD short courses, and as a supplement to more comprehensive CFD and fluid dynamics texts.

Computational Fluid Dynamics: Principles and Applications

Computational Fluid Dynamics: Principles and Applications PDF

Author: Jiri Blazek

Publisher: Elsevier

Published: 2005-12-20

Total Pages: 496

ISBN-13: 9780080529677

DOWNLOAD EBOOK →

Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today’s CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.

Computational Methods for Fluid Flow

Computational Methods for Fluid Flow PDF

Author: Roger Peyret

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 364

ISBN-13: 3642859526

DOWNLOAD EBOOK →

In developing this book, we decided to emphasize applications and to provide methods for solving problems. As a result, we limited the mathematical devel opments and we tried as far as possible to get insight into the behavior of numerical methods by considering simple mathematical models. The text contains three sections. The first is intended to give the fundamen tals of most types of numerical approaches employed to solve fluid-mechanics problems. The topics of finite differences, finite elements, and spectral meth ods are included, as well as a number of special techniques. The second section is devoted to the solution of incompressible flows by the various numerical approaches. We have included solutions of laminar and turbulent-flow prob lems using finite difference, finite element, and spectral methods. The third section of the book is concerned with compressible flows. We divided this last section into inviscid and viscous flows and attempted to outline the methods for each area and give examples.

Computational Fluid-Structure Interaction

Computational Fluid-Structure Interaction PDF

Author: Yuri Bazilevs

Publisher: John Wiley & Sons

Published: 2013-01-25

Total Pages: 444

ISBN-13: 111848357X

DOWNLOAD EBOOK →

Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.

Fundamentals of Computational Fluid Dynamics

Fundamentals of Computational Fluid Dynamics PDF

Author: H. Lomax

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 256

ISBN-13: 3662046547

DOWNLOAD EBOOK →

The chosen semi-discrete approach of a reduction procedure of partial differential equations to ordinary differential equations and finally to difference equations gives the book its distinctiveness and provides a sound basis for a deep understanding of the fundamental concepts in computational fluid dynamics.

Computational Fluid Mechanics and Heat Transfer, Second Edition

Computational Fluid Mechanics and Heat Transfer, Second Edition PDF

Author: Richard H. Pletcher

Publisher: CRC Press

Published: 1997-04-01

Total Pages: 828

ISBN-13: 9781560320463

DOWNLOAD EBOOK →

This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.

Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction

Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction PDF

Author: M'hamed Souli

Publisher: John Wiley & Sons

Published: 2013-03-01

Total Pages: 189

ISBN-13: 1118618688

DOWNLOAD EBOOK →

This book provides the fundamental basics for solving fluid structure interaction problems, and describes different algorithms and numerical methods used to solve problems where fluid and structure can be weakly or strongly coupled. These approaches are illustrated with examples arising from industrial or academic applications. Each of these approaches has its own performance and limitations. The added mass technique is described first. Following this, for general coupling problems involving large deformation of the structure, the Navier-Stokes equations need to be solved in a moving mesh using an ALE formulation. The main aspects of the fluid structure coupling are then developed. The first and by far simplest coupling method is explicit partitioned coupling. In order to preserve the flexibility and modularity that are inherent in the partitioned coupling, we also describe the implicit partitioned coupling using an iterative process. In order to reduce computational time for large-scale problems, an introduction to the Proper Orthogonal Decomposition (POD) technique applied to FSI problems is also presented. To extend the application of coupling problems, mathematical descriptions and numerical simulations of multiphase problems using level set techniques for interface tracking are presented and illustrated using specific coupling problems. Given the book's comprehensive coverage, engineers, graduate students and researchers involved in the simulation of practical fluid structure interaction problems will find this book extremely useful.

Computational Methods for Fluid Dynamics

Computational Methods for Fluid Dynamics PDF

Author: Joel H. Ferziger

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 431

ISBN-13: 3642560261

DOWNLOAD EBOOK →

In its third revised and extended edition the book offers an overview of the techniques used to solve problems in fluid mechanics on computers. The authors describe in detail the most often used techniques. Included are advanced techniques in computational fluid dynamics, such as direct and large-eddy simulation of turbulence. Moreover, a new section deals with grid quality and an extended description of discretization methods has also been included. Common roots and basic principles for many apparently different methods are explained. The book also contains a great deal of practical advice for code developers and users.