From Hamiltonian Chaos to Complex Systems

From Hamiltonian Chaos to Complex Systems PDF

Author: Xavier Leoncini

Publisher: Springer Science & Business Media

Published: 2013-07-14

Total Pages: 335

ISBN-13: 1461469627

DOWNLOAD EBOOK →

From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of research in various fields of physics and beyond, most notably with the perspective of application in complex systems.

Chaos

Chaos PDF

Author: Angelo Vulpiani

Publisher: World Scientific

Published: 2010

Total Pages: 482

ISBN-13: 9814277665

DOWNLOAD EBOOK →

Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.

The Physics of Chaos in Hamiltonian Systems

The Physics of Chaos in Hamiltonian Systems PDF

Author: George M. Zaslavsky

Publisher: Imperial College Press

Published: 2007

Total Pages: 337

ISBN-13: 1860948618

DOWNLOAD EBOOK →

This book aims to familiarize the reader with the essential properties of the chaotic dynamics of Hamiltonian systems by avoiding specialized mathematical tools, thus making it easily accessible to a broader audience of researchers and students. Unique material on the most intriguing and fascinating topics of unsolved and current problems in contemporary chaos theory is presented. The coverage includes: separatrix chaos; properties and a description of systems with non-ergodic dynamics; the distribution of Poincar(r) recurrences and their role in transport theory; dynamical models of the MaxwellOCOs Demon, the occurrence of persistent fluctuations, and a detailed discussion of their role in the problem underlying the foundation of statistical physics; the emergence of stochastic webs in phase space and their link to space tiling with periodic (crystal type) and aperiodic (quasi-crystal type) symmetries. This second edition expands on pseudochaotic dynamics with weak mixing and the new phenomenon of fractional kinetics, which is crucial to the transport properties of chaotic motion. The book is ideally suited to all those who are actively working on the problems of dynamical chaos as well as to those looking for new inspiration in this area. It introduces the physicist to the world of Hamiltonian chaos and the mathematician to actual physical problems.The material can also be used by graduate students."

Galileo Unbound

Galileo Unbound PDF

Author: David D. Nolte

Publisher: Oxford University Press

Published: 2018-07-12

Total Pages: 384

ISBN-13: 0192528505

DOWNLOAD EBOOK →

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.

Complex Hamiltonian Dynamics

Complex Hamiltonian Dynamics PDF

Author: Tassos Bountis

Publisher: Springer Science & Business Media

Published: 2012-04-03

Total Pages: 277

ISBN-13: 3642273041

DOWNLOAD EBOOK →

This book explores modern developments in Hamiltonian dynamical systems, focusing on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. Includes end-of-chapter exercises and challenging problems.

Thinking in Complexity

Thinking in Complexity PDF

Author: Klaus Mainzer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 357

ISBN-13: 3662033054

DOWNLOAD EBOOK →

Since the first edition sold out in less than a year, we now present the revised second edition of Mainzer's popular book. The theory of nonlinear complex systems has become a successful problem-solving approach in the natural sciences from laser physics, quantum chaos, and meteorology to computer simulations of cell growth in biology. It is now recognized that many of our social, ecological, and political problems are also of a global, complex, and nonlinear nature. And one of the most exciting contemporary topics is the idea that even the human mind is governed largely by the nonlinear dynamics of complex systems. In this wide-ranging but concise treatment, Prof. Mainzer discusses, in a nontechnical language, the common framework behind these endeavors. Emphasis is given to the evolution of new structures in natural and cultural systems and we see clearly how the new integrative approach can give insights not available from traditional reductionistic methods.

Hamiltonian Chaos and Fractional Dynamics

Hamiltonian Chaos and Fractional Dynamics PDF

Author: George M. Zaslavsky

Publisher: Oxford University Press on Demand

Published: 2005

Total Pages: 436

ISBN-13: 0198526040

DOWNLOAD EBOOK →

This books gives a realistic contemporary image of Hamiltonian dynamics, dealing with the basic principles of the Hamiltonian theory of chaos in addition to very recent and unusual applications of nonlinear dynamics and the fractality of dynamics.

Deterministic Chaos

Deterministic Chaos PDF

Author: N. Kumar

Publisher: Universities Press

Published: 1996

Total Pages: 116

ISBN-13: 9788173710421

DOWNLOAD EBOOK →

This book defines, describes, and prescribe the newly emerged paradigm of complexity of change-how a simple system ruled by a deterministic law can evolve in a manner too complex to predict in detail in the long run. After explaining, through examles, the underlying idea of sensitive depenence on initial conditions caused by non-linearity, id describes the powerful qualitative techniques.

Hamiltonian Chaos and Fractional Dynamics

Hamiltonian Chaos and Fractional Dynamics PDF

Author: George M. Zaslavsky

Publisher: OUP Oxford

Published: 2004-12-23

Total Pages: 436

ISBN-13: 0191523518

DOWNLOAD EBOOK →

The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image of the origin of dynamical chaos and randomness. An understanding of the origin of randomness in dynamical systems, which cannot be of the same origin as chaos, provides new insights in the diverse fields of physics, biology, chemistry, and engineering.