From Frenet to Cartan: The Method of Moving Frames

From Frenet to Cartan: The Method of Moving Frames PDF

Author: Jeanne N. Clelland

Publisher: American Mathematical Soc.

Published: 2017-03-29

Total Pages: 433

ISBN-13: 1470429527

DOWNLOAD EBOOK →

The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others. This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous spaces, including Euclidean, Minkowski, equi-affine, and projective spaces. Later chapters include applications to several classical problems in differential geometry, as well as an introduction to the nonhomogeneous case via moving frames on Riemannian manifolds. The book is written in a reader-friendly style, building on already familiar concepts from curves and surfaces in Euclidean space. A special feature of this book is the inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the computations involved in the exercises.

Cartan for Beginners

Cartan for Beginners PDF

Author: Thomas Andrew Ivey

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 394

ISBN-13: 0821833758

DOWNLOAD EBOOK →

This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

Riemannian Geometry in an Orthogonal Frame

Riemannian Geometry in an Orthogonal Frame PDF

Author: Elie Cartan

Publisher: World Scientific

Published: 2001

Total Pages: 284

ISBN-13: 9789810247478

DOWNLOAD EBOOK →

Elie Cartan's book Geometry of Riemannian Manifolds (1928) was one of the best introductions to his methods. It was based on lectures given by the author at the Sorbonne in the academic year 1925-26. A modernized and extensively augmented edition appeared in 1946 (2nd printing, 1951, and 3rd printing, 1988). Cartan's lectures in 1926-27 were different -- he introduced exterior forms at the very beginning and used extensively orthonormal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. The lectures were translated into Russian in the book Riemannian Geometry in an Orthogonal Frame (1960). This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. The only book of Elie Cartan that was not available in English, it has now been translated into English by Vladislav V Goldberg, the editor of the Russian edition.

Visual Differential Geometry and Forms

Visual Differential Geometry and Forms PDF

Author: Tristan Needham

Publisher: Princeton University Press

Published: 2021-07-13

Total Pages: 584

ISBN-13: 0691219893

DOWNLOAD EBOOK →

An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.

Lectures on Navier-Stokes Equations

Lectures on Navier-Stokes Equations PDF

Author: Tai-Peng Tsai

Publisher: American Mathematical Soc.

Published: 2018-08-09

Total Pages: 224

ISBN-13: 1470430967

DOWNLOAD EBOOK →

This book is a graduate text on the incompressible Navier-Stokes system, which is of fundamental importance in mathematical fluid mechanics as well as in engineering applications. The goal is to give a rapid exposition on the existence, uniqueness, and regularity of its solutions, with a focus on the regularity problem. To fit into a one-year course for students who have already mastered the basics of PDE theory, many auxiliary results have been described with references but without proofs, and several topics were omitted. Most chapters end with a selection of problems for the reader. After an introduction and a careful study of weak, strong, and mild solutions, the reader is introduced to partial regularity. The coverage of boundary value problems, self-similar solutions, the uniform L3 class including the celebrated Escauriaza-Seregin-Šverák Theorem, and axisymmetric flows in later chapters are unique features of this book that are less explored in other texts. The book can serve as a textbook for a course, as a self-study source for people who already know some PDE theory and wish to learn more about Navier-Stokes equations, or as a reference for some of the important recent developments in the area.

Introduction to Global Analysis: Minimal Surfaces in Riemannian Manifolds

Introduction to Global Analysis: Minimal Surfaces in Riemannian Manifolds PDF

Author: John Douglas Moore

Publisher: American Mathematical Soc.

Published: 2017-12-15

Total Pages: 368

ISBN-13: 1470429500

DOWNLOAD EBOOK →

During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of this subject is Morse theory, according to which the critical points of a generic smooth proper function on a manifold determine the homology of the manifold. Morse envisioned applying this idea to the calculus of variations, including the theory of periodic motion in classical mechanics, by approximating the space of loops on by a finite-dimensional manifold of high dimension. Palais and Smale reformulated Morse's calculus of variations in terms of infinite-dimensional manifolds, and these infinite-dimensional manifolds were found useful for studying a wide variety of nonlinear PDEs. This book applies infinite-dimensional manifold theory to the Morse theory of closed geodesics in a Riemannian manifold. It then describes the problems encountered when extending this theory to maps from surfaces instead of curves. It treats critical point theory for closed parametrized minimal surfaces in a compact Riemannian manifold, establishing Morse inequalities for perturbed versions of the energy function on the mapping space. It studies the bubbling which occurs when the perturbation is turned off, together with applications to the existence of closed minimal surfaces. The Morse-Sard theorem is used to develop transversality theory for both closed geodesics and closed minimal surfaces. This book is based on lecture notes for graduate courses on “Topics in Differential Geometry”, taught by the author over several years. The reader is assumed to have taken basic graduate courses in differential geometry and algebraic topology.

Lectures on Finite Fields

Lectures on Finite Fields PDF

Author: Xiang-dong Hou

Publisher: American Mathematical Soc.

Published: 2018-06-07

Total Pages: 240

ISBN-13: 1470442892

DOWNLOAD EBOOK →

The theory of finite fields encompasses algebra, combinatorics, and number theory and has furnished widespread applications in other areas of mathematics and computer science. This book is a collection of selected topics in the theory of finite fields and related areas. The topics include basic facts about finite fields, polynomials over finite fields, Gauss sums, algebraic number theory and cyclotomic fields, zeros of polynomials over finite fields, and classical groups over finite fields. The book is mostly self-contained, and the material covered is accessible to readers with the knowledge of graduate algebra; the only exception is a section on function fields. Each chapter is supplied with a set of exercises. The book can be adopted as a text for a second year graduate course or used as a reference by researchers.