Fracture Mechanics of Piezoelectric Solids with Interface Cracks

Fracture Mechanics of Piezoelectric Solids with Interface Cracks PDF

Author: Volodymyr Govorukha

Publisher: Springer

Published: 2017-03-14

Total Pages: 235

ISBN-13: 3319535536

DOWNLOAD EBOOK →

This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks between two dissimilar piezoelectric materials. It also investigates the model of a crack with electro-mechanical pre-fracture zones. The formulated problems are reduced to problems of linear relationship, which correspond to different crack models, and their exact analytical solutions are found. The book presents in detail the expressions for stress and electric displacement intensity factors, as well as for the energy release rate. The influence of the electric permittivity of the crack, the mechanical load and the electric field upon the electro-elastic state, as well as the main fracture mechanical parameters, are analyzed and clearly illustrated. This book addresses postgraduate students, university teachers and researchers dealing with the problems of fracture mechanics of piezoelectric materials, as well as engineers who are active in the analysis of strength and durability of piezoelectric constructions.

Fracture Mechanics of Piezoelectric and Ferroelectric Solids

Fracture Mechanics of Piezoelectric and Ferroelectric Solids PDF

Author: Daining Fang

Publisher: Springer Science & Business Media

Published: 2014-12-12

Total Pages: 430

ISBN-13: 3642300871

DOWNLOAD EBOOK →

Fracture Mechanics of Piezoelectric and Ferroelectric Solids presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.

Fracture Mechanics of Piezoelectric Materials

Fracture Mechanics of Piezoelectric Materials PDF

Author: Qing-Hua Qin

Publisher: Witpress

Published: 2001

Total Pages: 308

ISBN-13:

DOWNLOAD EBOOK →

Written with the aim of encouraging further development of the fracture mechanics of coupled thermo-electro-elastic problems, this monograph examines crack problems in piezoelectric materials. Emphasis is placed on fundamental concepts, the development of mathematical models and their computational solutions. The methods are described and derived in a way which makes them more accessible to postgraduate students, research scientists and engineers.

Fracture Mechanics of Electrically Passive and Active Composites with Periodic Cracking along the Interface

Fracture Mechanics of Electrically Passive and Active Composites with Periodic Cracking along the Interface PDF

Author: Sergey Kozinov

Publisher: Springer Nature

Published: 2020-03-21

Total Pages: 135

ISBN-13: 303043138X

DOWNLOAD EBOOK →

This book offers a comprehensive and timely review of the fracture behavior of bimaterial composites consisting of periodically connected components, i.e. of bimaterial composites possessing periodical cracks along the interface. It first presents an overview of the literature, and then analyzes the isotropic, anisotropic and piezoelectric/dielectric properties of bimaterial components, gradually increasing the difficulty of the solutions discussed up to the coupled electromechanical problems. While in the case of isotropic and anisotropic materials it covers the problems generated by an arbitrary set of cracks, for the piezoelectric materials it focuses on studying the influence of the electric permittivity of the crack’s filler, using not only a simple, fully electrically permeable model, but also a physically realistic, semi-permeable model. Throughout the analyses, the effects of the contact of the crack faces are taken into account so as to exclude the physically unrealistic interpenetration of the composite components that are typical of the classical open model. Further, the book derives and examines the mechanical and electromechanical fields, stress and electric intensity factors in detail. Providing extensive information on the fracture processes taking place in composite materials, the book helps readers become familiar with mathematical methods of complex function theory for obtaining exact analytical solutions.

Dynamic Fracture of Piezoelectric Materials

Dynamic Fracture of Piezoelectric Materials PDF

Author: Petia Dineva

Publisher: Springer Science & Business Media

Published: 2014-01-30

Total Pages: 249

ISBN-13: 331903961X

DOWNLOAD EBOOK →

Dynamic Fracture of Piezoelectric Materials focuses on the Boundary Integral Equation Method as an efficient computational tool. The presentation of the theoretical basis of piezoelectricity is followed by sections on fundamental solutions and the numerical realization of the boundary value problems. Two major parts of the book are devoted to the solution of problems in homogeneous and inhomogeneous solids. The book includes contributions on coupled electro-mechanical models, computational methods, its validation and the simulation results, which reveal different effects useful for engineering design and practice. The book is self-contained and well-illustrated, and it serves as a graduate-level textbook or as extra reading material for students and researchers.

Advanced Mechanics of Piezoelectricity

Advanced Mechanics of Piezoelectricity PDF

Author: Qinghua Qin

Publisher: Springer Science & Business Media

Published: 2012-11-29

Total Pages: 339

ISBN-13: 3642297676

DOWNLOAD EBOOK →

"Advanced Mechanics of Piezoelectricity" presents a comprehensive treatment of piezoelectric materials using linear electroelastic theory, symplectic models, and Hamiltonian systems. It summarizes the current state of practice and presents the most recent research findings in piezoelectricity. It is intended for researchers and graduate students in the fields of applied mechanics, material science and engineering, computational engineering, and aerospace engineering. Dr. Qinghua Qin is a professor at the School of Engineering, Australian National University, Australia.

Fracture Mechanics

Fracture Mechanics PDF

Author: Dietmar Gross

Publisher: Springer

Published: 2017-11-28

Total Pages: 366

ISBN-13: 3319710907

DOWNLOAD EBOOK →

- self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results

Contemporary Research in Engineering Science

Contemporary Research in Engineering Science PDF

Author: Romesh C. Batra

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 696

ISBN-13: 3642800017

DOWNLOAD EBOOK →

Fatigue failures occur in aerospace,marine,nuclear structures and automobile com ponents from initiation and propagation of cracks from holes,scratches or defects in the material. To design against these failures, crack propagation life and fracture strength need to be accurately predicted. It is reported in the literature, that these failures often initiate as surface cracks, corner cracks and cracks emanating from fastner holes. Such cracks are with elliptic or nearly elliptic in shapes. The deviation from elliptic shape is due to varying constraint effect along the crack front. Even in situations, when the cracks are through the thickness of the material, there would be thicknesswise variation of constraint effects leading to three dimensional nature of crack growth. Accurate predictions of the crack growth in these cases by numerical methods can be made only by solving three-dimensional boundary value problems. Empirical relationships have been developed [1] based on Linear Elastic Fracture Mechanics over years describing fatigue crack growth response. Some of these empirical relationships required modifications in the later stages, to meet the design applications. The Crack closure phenomenon discovered by Elber[2, 3] during the crack growth phase is mainly attributed to the local material yielding near the crack tip and the consequent residual plastic wake behind the crack tip. It helped considerably in understanding several aspects of fatigue crack growth and rewrite these relations.

Fracture Mechanics of Electromagnetic Materials

Fracture Mechanics of Electromagnetic Materials PDF

Author: Xiaohong Chen

Publisher: World Scientific

Published: 2012

Total Pages: 326

ISBN-13: 1848166648

DOWNLOAD EBOOK →

This volume provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities.