Fracture and Fatigue Control in Structures

Fracture and Fatigue Control in Structures PDF

Author: Stanley Theodore Rolfe

Publisher: ASTM International

Published: 1977

Total Pages: 527

ISBN-13:

DOWNLOAD EBOOK →

Emphasizes applications of fracture mechanics to prevent fracture and fatigue failures in structures, rather than the theoretical aspects of fracture mechanics. The concepts of driving force and resistance force are used to differentiate between the mathematical side and the materials side. Case studies of actual failures are new to the third edition. Annotation copyrighted by Book News, Inc., Portland, OR

Fracture and Fatigue Control in Structures

Fracture and Fatigue Control in Structures PDF

Author: John M. Barsom

Publisher:

Published: 1999

Total Pages: 525

ISBN-13: 9780803120822

DOWNLOAD EBOOK →

Annotation An introduction for practicing engineers or students at the beginning graduate or advanced undergraduate level, emphasizing the application of fracture mechanics to preventing fracture and fatigue failures in structures, rather than the theoretical aspects of the field. The topics include stress analysis for members with cracks, resistance forces, fatigue crack initiation, and fitness for service. Among the case studies are bridges, oil tankers, and steel casings. The earlier editions were in 1977 and 1987. Annotation c. Book News, Inc., Portland, OR (booknews.com).

Fracture and Fatigue Control in Structures

Fracture and Fatigue Control in Structures PDF

Author: John M. Barsom

Publisher:

Published: 1999

Total Pages: 0

ISBN-13: 9780803145412

DOWNLOAD EBOOK →

Annotation An introduction for practicing engineers or students at the beginning graduate or advanced undergraduate level, emphasizing the application of fracture mechanics to preventing fracture and fatigue failures in structures, rather than the theoretical aspects of the field. The topics include stress analysis for members with cracks, resistance forces, fatigue crack initiation, and fitness for service. Among the case studies are bridges, oil tankers, and steel casings. The earlier editions were in 1977 and 1987. Annotation copyrighted by Book News, Inc., Portland, OR.

Fracture Mechanics for Bridge Design

Fracture Mechanics for Bridge Design PDF

Author: Richard Roberts

Publisher:

Published: 1977

Total Pages: 218

ISBN-13:

DOWNLOAD EBOOK →

This report provides an introduction to the elements of fracture mechanics for bridge design. Fracture mechanics concepts are introduced and used as the basis for understanding fatigue and fracture in bridge structures. Various applications are cited.

Fatigue of Structures and Materials

Fatigue of Structures and Materials PDF

Author: J. Schijve

Publisher: Springer Science & Business Media

Published: 2008-12-16

Total Pages: 627

ISBN-13: 1402068085

DOWNLOAD EBOOK →

Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.

Fatigue Design

Fatigue Design PDF

Author: Carl C. Osgood

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 617

ISBN-13: 1483155226

DOWNLOAD EBOOK →

Fatigue Design, Second Edition discusses solutions of previous problems in fatigue as controlled by their particular conditions. The book aims to demonstrate the limitations of some methods and explores the realism and validity of the resulting solutions. The text is comprised of four chapters that tackle a specific area of concern. Chapter 1 provides the introduction and covers the scope, level, and limitations of the book. Chapter 2 deals with the characteristics of design approach, and Chapter 3 talks about the prediction of fatigue life. The last chapter discusses the general factors in fatigue. The book will be of great interest to researchers and professionals concerned with fatigue analysis, such as engineers and designers.

Problems of Fracture Mechanics and Fatigue

Problems of Fracture Mechanics and Fatigue PDF

Author: E.E. Gdoutos

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 573

ISBN-13: 9401727740

DOWNLOAD EBOOK →

On Fracture Mechanics A major objective of engineering design is the determination of the geometry and dimensions of machine or structural elements and the selection of material in such a way that the elements perform their operating function in an efficient, safe and economic manner. For this reason the results of stress analysis are coupled with an appropriate failure criterion. Traditional failure criteria based on maximum stress, strain or energy density cannot adequately explain many structural failures that occurred at stress levels considerably lower than the ultimate strength of the material. On the other hand, experiments performed by Griffith in 1921 on glass fibers led to the conclusion that the strength of real materials is much smaller, typically by two orders of magnitude, than the theoretical strength. The discipline of fracture mechanics has been created in an effort to explain these phenomena. It is based on the realistic assumption that all materials contain crack-like defects from which failure initiates. Defects can exist in a material due to its composition, as second-phase particles, debonds in composites, etc. , they can be introduced into a structure during fabrication, as welds, or can be created during the service life of a component like fatigue, environment-assisted or creep cracks. Fracture mechanics studies the loading-bearing capacity of structures in the presence of initial defects. A dominant crack is usually assumed to exist.