Fractional Modeling and Controller Design of Robotic Manipulators

Fractional Modeling and Controller Design of Robotic Manipulators PDF

Author: Abhaya Pal Singh

Publisher: Springer Nature

Published: 2020-10-15

Total Pages: 138

ISBN-13: 3030582477

DOWNLOAD EBOOK →

This book at hand is an appropriate addition to the field of fractional calculus applied to control systems. If an engineer or a researcher wishes to delve into fractional-order systems, then this book has many collections of such systems to work upon, and this book also tells the reader about how one can convert an integer-order system into an appropriate fractional-order one through an efficient and simple algorithm. If the reader further wants to explore the controller design for the fractional-order systems, then for them, this book provides a variety of controller design strategies. The use of fractional-order derivatives and integrals in control theory leads to better results than integer-order approaches and hence provides solid motivation for further development of control theory. Fractional-order models are more useful than the integer-order models when accuracy is of paramount importance. Real-time experimental validation of controller design strategies for the fractional-order plants is available. This book is beneficial to the academic institutes for postgraduate and advanced research-level that need a specific textbook on fractional control and its applications in srobotic manipulators. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students.

Advanced Studies of Flexible Robotic Manipulators

Advanced Studies of Flexible Robotic Manipulators PDF

Author: Fei-Yue Wang

Publisher: World Scientific

Published: 2003

Total Pages: 464

ISBN-13: 9789812796721

DOWNLOAD EBOOK →

Flexible robotic manipulators pose various challenges in research as compared to rigid robotic manipulators, ranging from system design, structural optimization, and construction to modeling, sensing, and control. Although significant progress has been made in many aspects over the last one-and-a-half decades, many issues are not resolved yet, and simple, effective, and reliable controls of flexible manipulators still remain an open quest. Clearly, further efforts and results in this area will contribute significantly to robotics (particularly automation) as well as its application and education in general control engineering. To accelerate this process, the leading experts in this important area present in this book the state of the art in advanced studies of the design, modeling, control and applications of flexible manipulators. Sample Chapter(s). Chapter 1: Flexible-link Manipulators: Modeling, Nonlinear Control and Observer (235 KB). Contents: Flexible-Link Manipulators: Modeling, Nonlinear Control and Observer (M A Arteaga & B Siciliano); Energy-Based Control of Flexible Link Robots (S S Ge); Trajectory Planning and Compliant Control for Two Manipulators to Deform Flexible Materials (O Al-Jarrah et al.); Force Control of Flexible Manipulators (F Matsuno); Experimental Study on the Control of Flexible Link Robots (D Wang); Sensor Output Feedback Control of Flexible Robot Arms (Z-H Luo); On GA Based Robust Control of Flexible Manipulators (Z-Q Xiao & L-L Cui); Analysis of Poles and Zeros for Tapered Link Designs (D L Girvin & W J Book); Optimum Shape Design of Flexible Manipulators with Tip Loads (J L Russell & Y-Q Gao); Mechatronic Design of Flexible Manipulators (P-X Zhou & Z-Q Xiao); A Comprehensive Study of Dynamic Behaviors of Flexible Robotic Links: Modeling and Analysis (Y-Q Gao & F-Y Wang). Readership: Researchers, lecturers and graduate students in robotics & automated systems, electrical & electronic engineering, and industrial engineering

Applied Fractional Calculus in Identification and Control

Applied Fractional Calculus in Identification and Control PDF

Author: Utkal Mehta

Publisher: Springer Nature

Published: 2022-09-10

Total Pages: 212

ISBN-13: 9811935017

DOWNLOAD EBOOK →

The book investigates the fractional calculus-based approaches and their benefits to adopting in complex real-time areas. Another objective is to provide initial solutions for new areas where fractional theory has yet to verify the expertise. The book focuses on the latest scientific interest and illustrates the basic idea of general fractional calculus with MATLAB codes. This book is ideal for researchers working on fractional calculus theory both in simulation and hardware. Researchers from academia and industry working or starting research in applied fractional calculus methods will find the book most useful. The scope of this book covers most of the theoretical and practical studies on linear and nonlinear systems using fractional-order integro-differential operators.

Robot Manipulator Control

Robot Manipulator Control PDF

Author: Frank L. Lewis

Publisher: CRC Press

Published: 2003-12-12

Total Pages: 646

ISBN-13: 9780203026953

DOWNLOAD EBOOK →

Robot Manipulator Control offers a complete survey of control systems for serial-link robot arms and acknowledges how robotic device performance hinges upon a well-developed control system. Containing over 750 essential equations, this thoroughly up-to-date Second Edition, the book explicates theoretical and mathematical requisites for controls design and summarizes current techniques in computer simulation and implementation of controllers. It also addresses procedures and issues in computed-torque, robust, adaptive, neural network, and force control. New chapters relay practical information on commercial robot manipulators and devices and cutting-edge methods in neural network control.

Adaptive Control for Robotic Manipulators

Adaptive Control for Robotic Manipulators PDF

Author: Dan Zhang

Publisher: CRC Press

Published: 2017-02-03

Total Pages: 407

ISBN-13: 1351678922

DOWNLOAD EBOOK →

The robotic mechanism and its controller make a complete system. As the robotic mechanism is reconfigured, the control system has to be adapted accordingly. The need for the reconfiguration usually arises from the changing functional requirements. This book will focus on the adaptive control of robotic manipulators to address the changed conditions. The aim of the book is to summarise and introduce the state-of-the-art technologies in the field of adaptive control of robotic manipulators in order to improve the methodologies on the adaptive control of robotic manipulators. Advances made in the past decades are described in the book, including adaptive control theories and design, and application of adaptive control to robotic manipulators.

Adaptive Neural Network Control of Robotic Manipulators

Adaptive Neural Network Control of Robotic Manipulators PDF

Author: Tong Heng Lee

Publisher: World Scientific

Published: 1998

Total Pages: 400

ISBN-13: 9789810234522

DOWNLOAD EBOOK →

Introduction; Mathematical background; Dynamic modelling of robots; Structured network modelling of robots; Adaptive neural network control of robots; Neural network model reference adaptive control; Flexible joint robots; task space and force control; Bibliography; Computer simulation; Simulation software in C.

Fundamentals in Modeling and Control of Mobile Manipulators

Fundamentals in Modeling and Control of Mobile Manipulators PDF

Author: Zhijun Li

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 292

ISBN-13: 1466580429

DOWNLOAD EBOOK →

Mobile manipulators combine the advantages of mobile platforms and robotic arms, extending their operational range and functionality to large spaces and remote, demanding, and/or dangerous environments. They also bring complexity and difficulty in dynamic modeling and control system design.

Robot Manipulators

Robot Manipulators PDF

Author: Etienne Dombre

Publisher: John Wiley & Sons

Published: 2013-03-01

Total Pages: 304

ISBN-13: 1118614100

DOWNLOAD EBOOK →

This book presents the most recent research results on modeling and control of robot manipulators. Chapter 1 gives unified tools to derive direct and inverse geometric, kinematic and dynamic models of serial robots and addresses the issue of identification of the geometric and dynamic parameters of these models. Chapter 2 describes the main features of serial robots, the different architectures and the methods used to obtain direct and inverse geometric, kinematic and dynamic models, paying special attention to singularity analysis. Chapter 3 introduces global and local tools for performance analysis of serial robots. Chapter 4 presents an original optimization technique for point-to-point trajectory generation accounting for robot dynamics. Chapter 5 presents standard control techniques in the joint space and task space for free motion (PID, computed torque, adaptive dynamic control and variable structure control) and constrained motion (compliant force-position control). In Chapter 6, the concept of vision-based control is developed and Chapter 7 is devoted to specific issue of robots with flexible links. Efficient recursive Newton-Euler algorithms for both inverse and direct modeling are presented, as well as control methods ensuring position setting and vibration damping.