Fourier Methods in Science and Engineering

Fourier Methods in Science and Engineering PDF

Author: Wen L. Li

Publisher: CRC Press

Published: 2022-11-21

Total Pages: 368

ISBN-13: 1000781097

DOWNLOAD EBOOK →

This innovative book discusses and applies the generalized Fourier Series to a variety of problems commonly encountered within science and engineering, equipping the readers with a clear pathway through which to use the Fourier methods as a solution technique for a wide range of differential equations and boundary value problems. Beginning with an overview of the conventional Fourier series theory, this book introduces the generalized Fourier series (GFS), emphasizing its notable rate of convergence when compared to the conventional Fourier series expansions. After systematically presenting the GFS as a powerful and unified solution method for ordinary differential equations and partial differential equations, this book expands on some representative boundary value problems, diving into their multiscale characteristics. This book will provide readers with the comprehensive foundation necessary for solving a wide spectrum of mathematical problems key to practical applications. It will also be of interest to researchers, engineers, and college students in various science, engineering, and mathematics fields.

Fourier Methods in Science and Engineering

Fourier Methods in Science and Engineering PDF

Author: Wen L. Li

Publisher: CRC Press

Published: 2022-11

Total Pages: 0

ISBN-13: 9781003194859

DOWNLOAD EBOOK →

This innovative book discusses and applies the generalized Fourier Series to a variety of problems commonly encountered within science and engineering, equipping the readers with a clear pathway through which to use the Fourier methods as a solution technique for a wide range of differential equations and boundary value problems. Beginning with an overview of the conventional Fourier series theory, this book introduces the generalized Fourier series (GFS), emphasizing its notable rate of convergence when compared to the conventional Fourier series expansions. After systematically presenting the GFS as a powerful and unified solution method for ordinary differential equations and partial differential equations, this book expands on some representative boundary value problems, diving into their multiscale characteristics. This book will provide readers with the comprehensive foundation necessary for solving a wide spectrum of mathematical problems key to practical applications. It will also be of interest to researchers, engineers, and college students in various science, engineering, and mathematics fields.

Fourier Methods in Science and Engineering

Fourier Methods in Science and Engineering PDF

Author: Wen Li

Publisher: CRC Press

Published: 2022-11-21

Total Pages: 341

ISBN-13: 1000781089

DOWNLOAD EBOOK →

This innovative book discusses and applies the generalized Fourier Series to a variety of problems commonly encountered within science and engineering, equipping the readers with a clear pathway through which to use the Fourier methods as a solution technique for a wide range of differential equations and boundary value problems. Beginning with an overview of the conventional Fourier series theory, this book introduces the generalized Fourier series (GFS), emphasizing its notable rate of convergence when compared to the conventional Fourier series expansions. After systematically presenting the GFS as a powerful and unified solution method for ordinary differential equations and partial differential equations, this book expands on some representative boundary value problems, diving into their multiscale characteristics. This book will provide readers with the comprehensive foundation necessary for solving a wide spectrum of mathematical problems key to practical applications. It will also be of interest to researchers, engineers, and college students in various science, engineering, and mathematics fields.

Fourier Methods in Imaging

Fourier Methods in Imaging PDF

Author: Roger L. Easton Jr.

Publisher: John Wiley & Sons

Published: 2010-11-18

Total Pages: 1005

ISBN-13: 1119991862

DOWNLOAD EBOOK →

Fourier Methods in Imaging introduces the mathematical tools for modeling linear imaging systems to predict the action of the system or for solving for the input. The chapters are grouped into five sections, the first introduces the imaging “tasks” (direct, inverse, and system analysis), the basic concepts of linear algebra for vectors and functions, including complex-valued vectors, and inner products of vectors and functions. The second section defines "special" functions, mathematical operations, and transformations that are useful for describing imaging systems. Among these are the Fourier transforms of 1-D and 2-D function, and the Hankel and Radon transforms. This section also considers approximations of the Fourier transform. The third and fourth sections examine the discrete Fourier transform and the description of imaging systems as linear "filters", including the inverse, matched, Wiener and Wiener-Helstrom filters. The final section examines applications of linear system models to optical imaging systems, including holography. Provides a unified mathematical description of imaging systems. Develops a consistent mathematical formalism for characterizing imaging systems. Helps the reader develop an intuitive grasp of the most common mathematical methods, useful for describing the action of general linear systems on signals of one or more spatial dimensions. Offers parallel descriptions of continuous and discrete cases. Includes many graphical and pictorial examples to illustrate the concepts. This book helps students develop an understanding of mathematical tools for describing general one- and two-dimensional linear imaging systems, and will also serve as a reference for engineers and scientists

Fourier Transforms

Fourier Transforms PDF

Author: Robert M. Gray

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 374

ISBN-13: 1461523591

DOWNLOAD EBOOK →

The Fourier transform is one of the most important mathematical tools in a wide variety of fields in science and engineering. In the abstract it can be viewed as the transformation of a signal in one domain (typically time or space) into another domain, the frequency domain. Applications of Fourier transforms, often called Fourier analysis or harmonic analysis, provide useful decompositions of signals into fundamental or "primitive" components, provide shortcuts to the computation of complicated sums and integrals, and often reveal hidden structure in data. Fourier analysis lies at the base of many theories of science and plays a fundamental role in practical engineering design. The origins of Fourier analysis in science can be found in Ptolemy's decomposing celestial orbits into cycles and epicycles and Pythagorus' de composing music into consonances. Its modern history began with the eighteenth century work of Bernoulli, Euler, and Gauss on what later came to be known as Fourier series. J. Fourier in his 1822 Theorie analytique de la Chaleur [16] (still available as a Dover reprint) was the first to claim that arbitrary periodic functions could be expanded in a trigonometric (later called a Fourier) series, a claim that was eventually shown to be incorrect, although not too far from the truth. It is an amusing historical sidelight that this work won a prize from the French Academy, in spite of serious concerns expressed by the judges (Laplace, Lagrange, and Legendre) re garding Fourier's lack of rigor.

Mathematical Methods for Engineers and Scientists 2

Mathematical Methods for Engineers and Scientists 2 PDF

Author: Kwong-Tin Tang

Publisher: Springer Science & Business Media

Published: 2006-11-30

Total Pages: 345

ISBN-13: 3540302689

DOWNLOAD EBOOK →

Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student-oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to help students feel comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.

Mathematical Methods for Engineers and Scientists 3

Mathematical Methods for Engineers and Scientists 3 PDF

Author: Kwong-Tin Tang

Publisher: Springer Science & Business Media

Published: 2007-01-10

Total Pages: 442

ISBN-13: 3540446974

DOWNLOAD EBOOK →

Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous examples, completely worked out, together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable in using advanced mathematical tools in junior, senior, and beginning graduate courses.

A Student's Guide to Fourier Transforms

A Student's Guide to Fourier Transforms PDF

Author: John Francis James

Publisher: Cambridge University Press

Published: 2002-09-19

Total Pages: 156

ISBN-13: 9780521004282

DOWNLOAD EBOOK →

Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science.

Mathematical Methods for Engineers and Scientists 3

Mathematical Methods for Engineers and Scientists 3 PDF

Author: Kwong-Tin Tang

Publisher: Springer Science & Business Media

Published: 2006-11-30

Total Pages: 442

ISBN-13: 3540446958

DOWNLOAD EBOOK →

Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous examples, completely worked out, together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable in using advanced mathematical tools in junior, senior, and beginning graduate courses.