Foundations of Complex Systems

Foundations of Complex Systems PDF

Author: Gregoire Nicolis

Publisher: World Scientific

Published: 2007

Total Pages: 343

ISBN-13: 981277565X

DOWNLOAD EBOOK →

A geometric process is a simple monotone process that was first introduced by the author in 1988. It is a generalization of renewal process. This book captures the extensive research work on geometric processes that has been done since then in both probability and statistics theory and various applications. Some results are published for the first time. A reference book for researchers and a handbook for practioners, it is also a useful textbook for postgraduate or senior undergraduate students.

Foundations Of Complex Systems: Nonlinear Dynamics, Statistical Physics, Information And Prediction

Foundations Of Complex Systems: Nonlinear Dynamics, Statistical Physics, Information And Prediction PDF

Author: Gregoire Nicolis

Publisher: World Scientific

Published: 2007-09-03

Total Pages: 343

ISBN-13: 9814476943

DOWNLOAD EBOOK →

Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, how natural complexity acts as a source of inspiration for progress at the fundamental level.

A Concise Introduction to the Statistical Physics of Complex Systems

A Concise Introduction to the Statistical Physics of Complex Systems PDF

Author: Eric Bertin

Publisher: Springer Science & Business Media

Published: 2011-09-28

Total Pages: 85

ISBN-13: 3642239234

DOWNLOAD EBOOK →

This concise primer (based on lectures given at summer schools on complex systems and on a masters degree course in complex systems modeling) will provide graduate students and newcomers to the field with the basic knowledge of the concepts and methods of statistical physics and its potential for application to interdisciplinary topics. Indeed, in recent years, statistical physics has begun to attract the interest of a broad community of researchers in the field of complex system sciences, ranging from biology to the social sciences, economics and computer science. More generally, a growing number of graduate students and researchers feel the need to learn some basic concepts and questions originating in other disciplines without necessarily having to master all of the corresponding technicalities and jargon. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting ‘entities’, and on the other to predict the macroscopic (or collective) behavior of the system considered from the microscopic laws ruling the dynamics of the individual ‘entities’. These two goals are, to some extent, also shared by what is nowadays called ‘complex systems science’ and for these reasons, systems studied in the framework of statistical physics may be considered as among the simplest examples of complex systems—allowing in addition a rather well developed mathematical treatment.

From Hamiltonian Chaos to Complex Systems

From Hamiltonian Chaos to Complex Systems PDF

Author: Xavier Leoncini

Publisher: Springer Science & Business Media

Published: 2013-07-14

Total Pages: 335

ISBN-13: 1461469627

DOWNLOAD EBOOK →

From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of research in various fields of physics and beyond, most notably with the perspective of application in complex systems.

Introduction to Nonextensive Statistical Mechanics

Introduction to Nonextensive Statistical Mechanics PDF

Author: Constantino Tsallis

Publisher: Springer Nature

Published: 2023-01-30

Total Pages: 575

ISBN-13: 3030795691

DOWNLOAD EBOOK →

This book focuses on nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs (BG) statistical mechanics. Conceived nearly 150 years ago by Maxwell, Boltzmann and Gibbs, the BG theory, one of the greatest monuments of contemporary physics, exhibits many impressive successes in physics, chemistry, mathematics, and computational sciences. Presently, several thousands of publications by scientists around the world have been dedicated to its nonextensive generalization. A variety of applications have emerged in complex systems and its mathematical grounding is by now well advanced. Since the first edition release thirteen years ago, there has been a vast amount of new results in the field, all of which have been incorporated in this comprehensive second edition. Heavily revised and updated with new sections and figures, the second edition remains the go-to text on the subject. A pedagogical introduction to the BG theory concepts and their generalizations – nonlinear dynamics, extensivity of the nonadditive entropy, global correlations, generalization of the standard CLT’s, complex networks, among others – is presented in this book, as well as a selection of paradigmatic applications in various sciences together with diversified experimental verifications of some of its predictions. Introduction to Nonextensive Statistical Mechanics is suitable for students and researchers with an interest in complex systems and statistical physics.

New Trends in Statistical Physics of Complex Systems

New Trends in Statistical Physics of Complex Systems PDF

Author: Antonio Scarfone

Publisher:

Published: 2019

Total Pages: 1

ISBN-13: 9783038974703

DOWNLOAD EBOOK →

A topical research activity in statistical physics concerns the study of complex and disordered systems. Generally, these systems are characterized by an elevated level of interconnection and interaction between the parts so that they give rise to a rich structure in the phase space that self-organizes under the control of internal non-linear dynamics. These emergent collective dynamics confer new behaviours to the whole system that are no longer the direct consequence of the properties of the single parts, but rather characterize the whole system as a new entity with its own features, giving rise to the birth of new phenomenologies. As is highlighted in this collection of papers, the methodologies of statistical physics have become very promising in understanding these new phenomena. This volume groups together 12 research works showing the use of typical tools developed within the framework of statistical mechanics, in non-linear kinetic and information geometry, to investigate emerging features in complex physical and physical-like systems.

Statistical Physics of Complex Systems

Statistical Physics of Complex Systems PDF

Author: Eric Bertin

Publisher: Springer Nature

Published: 2021-09-27

Total Pages: 303

ISBN-13: 3030799492

DOWNLOAD EBOOK →

This third edition of Statistical Physics of Complex Systems has been expanded to provide more examples of applications of concepts and methods from statistical physics to the modeling of complex systems. These include avalanche dynamics in materials, models of social agents like road traffic or wealth repartition, the real space aspects of biological evolution dynamics, propagation phenomena on complex networks, formal neural networks and their connection to constraint satisfaction problems. This course-tested textbook provides graduate students and non-specialists with a basic understanding of the concepts and methods of statistical physics and demonstrates their wide range of applications to interdisciplinary topics in the field of complex system sciences, including selected aspects of theoretical modeling in biology and the social sciences. It covers topics such as non-conserved particles, evolutionary population dynamics, networks, properties of both individual and coupled simple dynamical systems, and convergence theorems, as well as short appendices that offer helpful hints on how to perform simple stochastic simulations in practice. The original spirit of the book is to remain accessible to a broad, non-specialized readership. The format is a set of concise, modular, and self-contained topical chapters, avoiding technicalities and jargon as much as possible, and complemented by a wealth of worked-out examples, so as to make this work useful as a self-study text or as textbook for short courses.

Statistical Physics of Synchronization

Statistical Physics of Synchronization PDF

Author: Shamik Gupta

Publisher: Springer

Published: 2018-08-28

Total Pages: 121

ISBN-13: 3319966642

DOWNLOAD EBOOK →

This book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of the statistical physics approach to obtain insightful results in a number of representative dynamical settings. Although it is intractable to follow the dynamics of a particular initial condition, statistical physics allows to derive exact analytical results in the limit of an infinite number of interacting units. Chapter one discusses dynamical characterization of individual units of synchronizing systems as well as of their interaction and summarizes the relevant tools of statistical physics. The latter are then used in chapters two and three to discuss respectively synchronizing systems with either a first- or a second-order evolution in time. This book provides a timely introduction to the subject and is meant for the uninitiated as well as for experienced researchers working in areas of nonlinear dynamics and chaos, statistical physics, and complex systems.

Introduction to Designing Environments

Introduction to Designing Environments PDF

Author: Michael U. Hensel

Publisher: Springer Nature

Published: 2023-07-08

Total Pages: 238

ISBN-13: 3031343786

DOWNLOAD EBOOK →

The Designing Environments book series addresses questions regarding necessary environmental transformation in the context of the fast-unfolding environmental crisis. This is done from a broad interdisciplinary perspective, examining the negative impact of human transformations of the environment and providing different inroads towards sustainable environmental transformation with net positive impact. Volume one of the Designing Environments book series brings together experts from different disciplines and often inter- and transdisciplinary contexts, who discuss specific approaches to overcoming the negative impact of the transformation of environments by humans. Across the 12 chapters of volume one, specific keywords recur that are indicative of shared insights and concerns. These include Anthropocene, climate change, complexity, critical zone, ecosystem services, and sustainability. Furthermore, interdisciplinary approaches to human–environment interactions, sustainability transitions, and socio-ecological systems take center stage and are discussed in relation to conceptual and methodological as well as societal and technological challenges and opportunities.