Foundations of Arithmetic Differential Geometry

Foundations of Arithmetic Differential Geometry PDF

Author: Alexandru Buium

Publisher: American Mathematical Society

Published: 2023-11-20

Total Pages: 357

ISBN-13: 1470475774

DOWNLOAD EBOOK →

The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

New Foundations in Mathematics

New Foundations in Mathematics PDF

Author: Garret Sobczyk

Publisher: Springer Science & Business Media

Published: 2012-10-26

Total Pages: 373

ISBN-13: 0817683852

DOWNLOAD EBOOK →

The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.

Foundations of Differentiable Manifolds and Lie Groups

Foundations of Differentiable Manifolds and Lie Groups PDF

Author: Frank W. Warner

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 283

ISBN-13: 1475717997

DOWNLOAD EBOOK →

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

Arithmetic Differential Equations

Arithmetic Differential Equations PDF

Author: Alexandru Buium

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 346

ISBN-13: 0821838628

DOWNLOAD EBOOK →

For most of the book the only prerequisites are the basic facts of algebraic geometry and number theory."--BOOK JACKET.

Introduction to Differential Geometry

Introduction to Differential Geometry PDF

Author: Joel W. Robbin

Publisher: Springer Nature

Published: 2022-01-12

Total Pages: 426

ISBN-13: 3662643405

DOWNLOAD EBOOK →

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Differential Geometry

Differential Geometry PDF

Author: Clifford Taubes

Publisher: Oxford University Press on Demand

Published: 2011-10-13

Total Pages: 313

ISBN-13: 0199605882

DOWNLOAD EBOOK →

Bundles, connections, metrics and curvature are the lingua franca of modern differential geometry and theoretical physics. Supplying graduate students in mathematics or theoretical physics with the fundamentals of these objects, this book would suit a one-semester course on the subject of bundles and the associated geometry.

Differential Geometry

Differential Geometry PDF

Author: Loring W. Tu

Publisher: Springer

Published: 2017-06-01

Total Pages: 347

ISBN-13: 3319550845

DOWNLOAD EBOOK →

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Real Analysis: A Comprehensive Course in Analysis, Part 1

Real Analysis: A Comprehensive Course in Analysis, Part 1 PDF

Author: Barry Simon

Publisher: American Mathematical Soc.

Published: 2015-11-02

Total Pages: 789

ISBN-13: 1470410990

DOWNLOAD EBOOK →

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.

The Legacy of Mario Pieri in Geometry and Arithmetic

The Legacy of Mario Pieri in Geometry and Arithmetic PDF

Author: Elena Anne Marchisotto

Publisher: Springer Science & Business Media

Published: 2007-12-05

Total Pages: 508

ISBN-13: 0817646035

DOWNLOAD EBOOK →

This book is the first in a series of three volumes that comprehensively examine Mario Pieri’s life, mathematical work and influence. The book introduces readers to Pieri’s career and his studies in foundations, from both historical and modern viewpoints. Included in this volume are the first English translations, along with analyses, of two of his most important axiomatizations — one in arithmetic and one in geometry. The book combines an engaging exposition, little-known historical notes, exhaustive references and an excellent index. And yet the book requires no specialized experience in mathematical logic or the foundations of geometry.