Equilibrium Statistical Physics (2nd Edition)

Equilibrium Statistical Physics (2nd Edition) PDF

Author: Michael Plischke

Publisher: World Scientific Publishing Company

Published: 1994-12-14

Total Pages: 537

ISBN-13: 9813104716

DOWNLOAD EBOOK →

Newer Edition Available: Equilibrium Statistical Physics (3rd Edition)This revised and expanded edition of one of the important textbook in statistical physics, is a graduate level text suitable for students in physics, chemistry, and materials science.After a short review of basic concepts, the authors begin the discussion on strongly interacting condensed matter systems with a thorough treatment of mean field and Landau theories of phase transitions. Many examples are worked out in considerable detail. Classical liquids are treated next. Along with traditional approaches to the subject such as the virial expansion and integral equations, newer theories such as perturbation theory and density functional theories are introduced.The modern theory of phase transitions occupies a central place in this book. The development is along historical lines, beginning with the Onsager solution of the two-dimensional Ising model, series expansions, scaling theory, finite-size scaling, and the universality hypothesis. A separate chapter is devoted to the renormalization group approach to critical phenomena. The development of the basic tools is completed in a new chapter on computer simulations in which both Monte Carlo and molecular dynamics techniques are introduced.The remainder of the book is concerned with a discussion of some of the more important modern problems in condensed matter theory. A chapter on quantum fluids deals with Bose condensation, superfluidity, and the BCS and Landau-Ginzburg theories of superconductivity. A new chapter on polymers and membranes contains a discussion of the Gaussian and Flory models of dilute polymer mixtures, the connection of polymer theory to critical phenomena, a discussion of dense polymer mixtures and an introduction to the physical properties of solid and fluid membranes. A chapter on linear response includes the Kubo formalism, the fluctuation-dissipation theorem, Onsager relations and the Boltzmann equation. The last chapter is devoted to disordered materials.Each chapter contains a substantial number of exercises. A manual with a complete set of solutions to these problems is available under separate cover.

Stable Processes and Related Topics

Stable Processes and Related Topics PDF

Author: Cambanis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 329

ISBN-13: 1468467786

DOWNLOAD EBOOK →

The Workshop on Stable Processes and Related Topics took place at Cor nell University in January 9-13, 1990, under the sponsorship of the Mathemat ical Sciences Institute. It attracted an international roster of probabilists from Brazil, Japan, Korea, Poland, Germany, Holland and France as well as the U. S. This volume contains a sample of the papers presented at the Workshop. All the papers have been refereed. Gaussian processes have been studied extensively over the last fifty years and form the bedrock of stochastic modeling. Their importance stems from the Central Limit Theorem. They share a number of special properties which facilitates their analysis and makes them particularly suitable to statistical inference. The many properties they share, however, is also the seed of their limitations. What happens in the real world away from the ideal Gaussian model? The non-Gaussian world may contain random processes that are close to the Gaussian. What are appropriate classes of nearly Gaussian models and how typical or robust is the Gaussian model amongst them? Moving further away from normality, what are appropriate non-Gaussian models that are sufficiently different to encompass distinct behavior, yet sufficiently simple to be amenable to efficient statistical inference? The very Central Limit Theorem which provides the fundamental justifi cation for approximate normality, points to stable and other infinitely divisible models. Some of these may be close to and others very different from Gaussian models.

Classification in the Information Age

Classification in the Information Age PDF

Author: Wolfgang A. Gaul

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 605

ISBN-13: 3642601871

DOWNLOAD EBOOK →

The volume presents contributions to the analysis of data in the information age - a challenge of growing importance. Scientists and professionals interested in classification, data analysis, and statistics will find in this book latest research results as well as applications to economics (especially finance and marketing), archeology, bioinformatics, environment, and health.

High Dimensional Probability VI

High Dimensional Probability VI PDF

Author: Christian Houdré

Publisher: Springer Science & Business Media

Published: 2013-04-19

Total Pages: 374

ISBN-13: 3034804903

DOWNLOAD EBOOK →

This is a collection of papers by participants at High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other areas of mathematics, statistics, and computer science. These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory. The papers in this volume show that HDP theory continues to develop new tools, methods, techniques and perspectives to analyze the random phenomena. Both researchers and advanced students will find this book of great use for learning about new avenues of research.​

Methods in Computational Molecular Physics

Methods in Computational Molecular Physics PDF

Author: Geerd H.F. Diercksen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 367

ISBN-13: 9400972008

DOWNLOAD EBOOK →

This NATO Advanced Study Institute was concerned with modern ab initio methods for the determination of the electronic structure of molecules. Recent years have seen considerable progress in computer technology and computer science and these developments have had a very significant influence on computational molecular physics. Progress in computer technology has led to increasingly larger and faster systems as well as powerful minicomputers. Simultaneous research in computer science has explored new methods for the optimal use of these resources. To a large extent develop ments in computer technology, computer science and computational molecular physics have been mutually dependent. The availability of new computational resources, particularly minicomputers and, more recently, vector processors, has stimulat'ed a great deal of research in molecular physics. Well established techniques have been reformulated to make more efficient use of the new computer technology and algorithms which were previously computationally intractable have now been successfully implemented. This research has given a new and exciting insight into molecular structure and molecular processes by enabling smaller systems to be studied in greater detail and larger systems to be studied for the first time.