Fluid-Structure Interactions

Fluid-Structure Interactions PDF

Author: Michael P. Paidoussis

Publisher: Academic Press

Published: 2013-12-07

Total Pages: 885

ISBN-13: 0123973139

DOWNLOAD EBOOK →

The first of two books concentrating on the dynamics of slender bodies within or containing axial flow, Fluid-Structure Interaction, Volume 1 covers the fundamentals and mechanisms giving rise to flow-induced vibration, with a particular focus on the challenges associated with pipes conveying fluid. This volume has been thoroughly updated to reference the latest developments in the field, with a continued emphasis on the understanding of dynamical behaviour and analytical methods needed to provide long-term solutions and validate the latest computational methods and codes. In this edition, Chapter 7 from Volume 2 has also been moved to Volume 1, meaning that Volume 1 now mainly treats the dynamics of systems subjected to internal flow, whereas in Volume 2 the axial flow is in most cases external to the flow or annular. Provides an in-depth review of an extensive range of fluid-structure interaction topics, with detailed real-world examples and thorough referencing throughout for additional detail Organized by structure and problem type, allowing you to dip into the sections that are relevant to the particular problem you are facing, with numerous appendices containing the equations relevant to specific problems Supports development of long-term solutions by focusing on the fundamentals and mechanisms needed to understand underlying causes and operating conditions under which apparent solutions might not prove effective

Fluid-Structure Interactions: Volume 2

Fluid-Structure Interactions: Volume 2 PDF

Author: Michael P. Paidoussis

Publisher: Elsevier

Published: 2016-02-05

Total Pages: 942

ISBN-13: 0123973341

DOWNLOAD EBOOK →

The second of two volumes concentrating on the dynamics of slender bodies within or containing axial flow, Volume 2 covers fluid-structure interactions relating to shells, cylinders and plates containing or immersed in axial flow, as well as slender structures subjected to annular and leakage flows. This volume has been thoroughly updated to reference the latest developments in the field, with a continued emphasis on the understanding of dynamical behaviour and analytical methods needed to provide long-term solutions and validate the latest computational methods and codes, with increased coverage of computational techniques and numerical methods, particularly for the solution of non-linear three-dimensional problems. Provides an in-depth review of an extensive range of fluid-structure interaction topics, with detailed real-world examples and thorough referencing throughout for additional detail Organized by structure and problem type, allowing you to dip into the sections that are relevant to the particular problem you are facing, with numerous appendices containing the equations relevant to specific problems Supports development of long-term solutions by focusing on the fundamentals and mechanisms needed to understand underlying causes and operating conditions under which apparent solutions might not prove effective

Fluid Structure Interaction II

Fluid Structure Interaction II PDF

Author: Hans-Joachim Bungartz

Publisher: Springer Science & Business Media

Published: 2010-09-28

Total Pages: 430

ISBN-13: 3642142060

DOWNLOAD EBOOK →

Fluid-structure interactions (FSI), i.e., the interplay of some moveable or deformable structure with an internal or surrounding fluid, are among the most widespread and most challenging coupled or multi-physics problems. Although much has been accomplished in developing good computational FSI methods and despite convincing solutions to a number of classes of problems including those presented in this book, there is a need for more comprehensive studies showing that the computational methods proposed are reliable, robust, and efficient beyond the classes of problems they have successfully been applied to.This volume of LNCSE, a sequel to vol. 53, which contained, among others, the first numerical benchmark for FSI problems and has received considerable attention since then, presents a collection of papers from the "First International Workshop on Computational Engineering - special focus FSI," held in Herrsching in October 2009 and organized by three DFG-funded consortia. The papers address all relevant aspects of FSI simulation and discuss FSI from the mathematical, informatical, and engineering perspective.

Fluid-Structure Interactions

Fluid-Structure Interactions PDF

Author: Michael P. Païdoussis

Publisher: Cambridge University Press

Published: 2014-01-02

Total Pages: 414

ISBN-13: 9781107652958

DOWNLOAD EBOOK →

Structures in contact with fluid flow, whether natural or man-made, are inevitably subject to flow-induced forces and flow-induced vibration: from plant leaves to traffic signs and to more substantial structures, such as bridge decks and heat exchanger tubes. Under certain conditions the vibration may be self-excited, and it is usually referred to as an instability. These instabilities and, more specifically, the conditions under which they arise are of great importance to designers and operators of the systems concerned because of the significant potential to cause damage in the short term. Such flow-induced instabilities are the subject of this book. In particular, the flow-induced instabilities treated in this book are associated with cross-flow, that is, flow normal to the long axis of the structure. The book treats a specific set of problems that are fundamentally and technologically important: galloping, vortex-shedding oscillations under lock-in conditions, and rain-and-wind-induced vibrations, among others. The emphasis throughout is on providing a physical description of the phenomena that is as clear and up-to-date as possible.

Computational Fluid-Structure Interaction

Computational Fluid-Structure Interaction PDF

Author: Yuri Bazilevs

Publisher: John Wiley & Sons

Published: 2013-01-25

Total Pages: 444

ISBN-13: 111848357X

DOWNLOAD EBOOK →

Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.

Fluid-Structure Interactions

Fluid-Structure Interactions PDF

Author: Michael P. Paidoussis

Publisher: Academic Press

Published: 2014-02-25

Total Pages: 888

ISBN-13: 9780123973122

DOWNLOAD EBOOK →

The first of two books concentrating on the dynamics of slender bodies within or containing axial flow, Fluid-Structure Interaction, Volume 1 covers the fundamentals and mechanisms giving rise to flow-induced vibration, with a particular focus on the challenges associated with pipes conveying fluid. This volume has been thoroughly updated to reference the latest developments in the field, with a continued emphasis on the understanding of dynamical behaviour and analytical methods needed to provide long-term solutions and validate the latest computational methods and codes. In this edition, Chapter 7 from Volume 2 has also been moved to Volume 1, meaning that Volume 1 now mainly treats the dynamics of systems subjected to internal flow, whereas in Volume 2 the axial flow is in most cases external to the flow or annular. Provides an in-depth review of an extensive range of fluid-structure interaction topics, with detailed real-world examples and thorough referencing throughout for additional detail Organized by structure and problem type, allowing you to dip into the sections that are relevant to the particular problem you are facing, with numerous appendices containing the equations relevant to specific problems Supports development of long-term solutions by focusing on the fundamentals and mechanisms needed to understand underlying causes and operating conditions under which apparent solutions might not prove effective

Introduction to Fluid-Structure Interactions

Introduction to Fluid-Structure Interactions PDF

Author: Yahya Modarres-Sadeghi

Publisher: Springer Nature

Published: 2022-02-07

Total Pages: 238

ISBN-13: 3030858847

DOWNLOAD EBOOK →

This timely book introduces the subject of Fluid-Structure Interactions (FSI) to students and professionals. It discusses the major ideas in FSI with the goal of providing the fundamental understanding to the readers who possess limited or no understanding of the subject. The author presents the physics of the problem, rather than focusing on the methods, and discusses the essential methods of analysis. The principle goal of Introduction to Fluid-Structure Interactions is impart to students and practitioner a physical understanding of major topics in fluid-structure interactions: axial flow problems (when the direction of the flow is parallel to the long axis of the structure) and crossflow problems (when the direction of the flow is normal to the long axis of the structure). Facilitating readers’ understanding of both categories, starting with simple 1 DOF systems and continuing to more complicated continuous flexible structures, Introduction to Fluid-Structure Interactions, is ideal for graduate students and practitioners interested in this critical field. Stands as a unique introductory volume to study Fluid-Structure Interactions (FSI); Covers aspects of FSI relevant to Fluid Mechanics, Wind Energy, Ocean Engineering, and Biomedical research; Integrates most recent findings from research on FSI; Emphasizes the physics behind the phenomena in detail; Maximizes readers understanding by beginning with fundamental concepts and developing focus to more complex systems.

Fluid-Structure Interaction

Fluid-Structure Interaction PDF

Author: Jean-François Sigrist

Publisher: John Wiley & Sons

Published: 2015-09-23

Total Pages: 304

ISBN-13: 1118927753

DOWNLOAD EBOOK →

Fluid-Structure Interaction: An Introduction to FiniteElement Coupling fulfils the need for an introductive approachto the general concepts of Finite and Boundary Element Methods forFSI, from the mathematical formulation to the physicalinterpretation of numerical simulations. Based on theauthor’s experience in developing numerical codes forindustrial applications in shipbuilding and in teaching FSI to bothpracticing engineers and within academia, it provides acomprehensive and self–contained guide that is geared towardboth students and practitioners of mechanical engineering. Composedof six chapters, Fluid–Structure Interaction: An Introduction to FiniteElement Coupling progresses logically from formulations andapplications involving structure and fluid dynamics, fluid andstructure interactions and opens to reduced order-modelling forvibro-acoustic coupling. The author describes simple yetfundamental illustrative examples in detail, using analyticaland/or semi–analytical formulation & designed both toillustrate each numerical method and also to highlight a physicalaspect of FSI. All proposed examples are simple enough to becomputed by the reader using standard computational tools such asMATLAB, making the book a unique tool for self–learning andunderstanding the basics of the techniques for FSI, or can serve asverification and validation test cases of industrial FEM/BEM codesrendering the book valuable for code verification and validationpurposes.

Acoustics of Fluid-Structure Interactions

Acoustics of Fluid-Structure Interactions PDF

Author: M. S. Howe

Publisher: Cambridge University Press

Published: 1998-08-13

Total Pages: 572

ISBN-13: 0521633206

DOWNLOAD EBOOK →

A reference for analytical methods for modelling acoustic problems, a repository of known results and methods in the theory of aerodynamic sound, and a graduate-level textbook.

Fluid-Structure Interactions and Uncertainties

Fluid-Structure Interactions and Uncertainties PDF

Author: Abdelkhalak El Hami

Publisher: John Wiley & Sons

Published: 2017-02-08

Total Pages: 240

ISBN-13: 1119388929

DOWNLOAD EBOOK →

This book is dedicated to the general study of fluid structure interaction with consideration of uncertainties. The fluid-structure interaction is the study of the behavior of a solid in contact with a fluid, the response can be strongly affected by the action of the fluid. These phenomena are common and are sometimes the cause of the operation of certain systems, or otherwise manifest malfunction. The vibrations affect the integrity of structures and must be predicted to prevent accelerated wear of the system by material fatigue or even its destruction when the vibrations exceed a certain threshold.