Fire Design of Concrete Structures - Structural Behaviour and Assessment

Fire Design of Concrete Structures - Structural Behaviour and Assessment PDF

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2008-01-01

Total Pages: 216

ISBN-13: 288394086X

DOWNLOAD EBOOK →

Concrete is well known to behave efficiently in fire conditions, as it is incombustible, does not emit smoke, and provides good thermal insulation. Furthermore, in reinforced concrete structures, the concrete cover gives a natural protection to the reinforcement, and the size of the sections often delays the heating of the core, thus favouring the fire resistance of the structural members. In addition, concrete structures are often robust and therefore able to accommodate local damage without major consequences to the overall structural integrity. However, past experience with real fires shows that a thorough understanding of concrete behaviour and structural mechanics is still needed to improve the design of R/C structures with respect to fire. The objective of fib Bulletin 46 is to augment the current knowledge about concrete and concrete structures under fire, not only for the design of new structures, but also for the analysis and repair of existing fire-damaged structures. Both structural and materials issues are examined, and the results of the most recent research activities on the structural performance of concrete subjected to fire are reported. Special attention is paid to the indirect actions caused by the restrained thermal deformations and several basic examples show how a local fire influences global structural behaviour. fib Bulletin 46 is intended for use by practicing engineers to improve their understanding of the behaviour of concrete structures in fire and thereby produce better and safer design standards.

Fire Design of Concrete Structures - Materials, Structures and Modelling

Fire Design of Concrete Structures - Materials, Structures and Modelling PDF

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2007-01-01

Total Pages: 105

ISBN-13: 2883940789

DOWNLOAD EBOOK →

Fire design of concrete structures has emerged in recent years as a high profile subject of great interest to both experts and the public. This has been largely prompted by severe damage to concrete in a number of recent tunnel fires, as well as a considerable amount of research and development that has taken place world-wide. fib Task Group 4.3, "Fire Design of Concrete Structures", therefore took the initiative to develop this bulletin in order to present the results of this international research to a wider group of concrete professionals. The report presents a general brief outline of the effect of fire on both concrete material and concrete structures, with emphasis placed on the important developments of the past few years, namely: (a) the increasing use of high strength concrete (HSC) in buildings, tunnels and bridges; (b) the growing acceptance of the use of performance based fire engineering calculations for the structural analysis and design against fire; (c) the problem of, and solutions to, explosive spalling; and (d) fires in tunnels. This report is not intended to be an exhaustive review of the effect of fire on concrete and concrete structures, nor to present a database of properties at high temperature. Instead, the main aims of this document are to present recent trends and developments, highlight key influencing factors, bring together the disparate but related issues in one short document, highlight the deficiencies in current practice and point to the future. The basic principles of performance based codes and fire engineering are also presented on the assumption that the reader is not a specialist in this field.

Structural Concrete Textbook, Volume 4

Structural Concrete Textbook, Volume 4 PDF

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2010-06-01

Total Pages: 203

ISBN-13: 2883940940

DOWNLOAD EBOOK →

The second edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) to fib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.

Structural Concrete Textbook, Volume 5

Structural Concrete Textbook, Volume 5 PDF

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2012-06-01

Total Pages: 482

ISBN-13: 2883941025

DOWNLOAD EBOOK →

The third edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) tofib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.

Structural Design for Fire Safety

Structural Design for Fire Safety PDF

Author: Andrew H. Buchanan

Publisher: John Wiley & Sons

Published: 2017-01-30

Total Pages: 437

ISBN-13: 0470972890

DOWNLOAD EBOOK →

Structural Design for Fire Safety, 2nd edition Andrew H. Buchanan, University of Canterbury, New Zealand Anthony K. Abu, University of Canterbury, New Zealand A practical and informative guide to structural fire engineering This book presents a comprehensive overview of structural fire engineering. An update on the first edition, the book describes new developments in the past ten years, including advanced calculation methods and computer programs. Further additions include: calculation methods for membrane action in floor slabs exposed to fires; a chapter on composite steel-concrete construction; and case studies of structural collapses. The book begins with an introduction to fire safety in buildings, from fire growth and development to the devastating effects of severe fires on large building structures. Methods of calculating fire severity and fire resistance are then described in detail, together with both simple and advanced methods for assessing and designing for structural fire safety in buildings constructed from structural steel, reinforced concrete, or structural timber. Structural Design for Fire Safety, 2nd edition bridges the information gap between fire safety engineers, structural engineers and building officials, and it will be useful for many others including architects, code writers, building designers, and firefighters. Key features: • Updated references to current research, as well as new end-of-chapter questions and worked examples. •Authors experienced in teaching, researching, and applying structural fire engineering in real buildings. • A focus on basic principles rather than specific building code requirements, for an international audience. An essential guide for structural engineers who wish to improve their understanding of buildings exposed to severe fires and an ideal textbook for introductory or advanced courses in structural fire engineering.

Integrated life cycle assessment of concrete structures

Integrated life cycle assessment of concrete structures PDF

Author: fib Fédération Internationale du béton

Publisher: fib Fédération Internationale du béton

Published: 2013-09-03

Total Pages: 70

ISBN-13: 2883941114

DOWNLOAD EBOOK →

Concrete is after water the second most used material. The production of concrete in the industrialized countries annually amounts to 1.5-3 tonne per capita and is still increasing. This has significant impact on the environment. Thus there is an urgent need for more effective use of concrete in structures and their assessment. The scope of activities of the fib Task Group 3.7 was to define the methodology for integrated life-cycle assessment of concrete structures considering main essential aspects of sustainability such as: environmental, economic and social aspects throughout the whole life of the concrete structure. The aim was to set up basic methodology to be helpful in development of design and assessment tools focused on sustainability of concrete structure within the whole life cycle. Integrated Life Cycle Assessment (ILCA) represents an advanced approach integrating different aspects of sustainability in one complex assessment procedure. The integrated approach is necessary to insure that the structure will serve during the whole expected service life with a maximum functional quality and safety, while environmental and economic loads will be kept at a low level. The effective application and quality of results are dependent on the availability of relevant input data obtained using a detailed inventory analysis, based on specific regional conditions. The evaluation of the real level of total quality of concrete structure should be based on a detailed ILCA analysis using regionally or locally relevant data sets.

Safety and performance concept. Reliability assessment of concrete structures

Safety and performance concept. Reliability assessment of concrete structures PDF

Author: fib Fédération internationale du béton

Publisher: FIB - Féd. Int. du Béton

Published: 2018-08-01

Total Pages: 375

ISBN-13: 2883941262

DOWNLOAD EBOOK →

Concrete structures have been built for more than 100 years. At first, reinforced concrete was used for buildings and bridges, even for those with large spans. Lack of methods for structural analysis led to conservative and reliable design. Application of prestressed concrete started in the 40s and strongly developed in the 60s. The spans of bridges and other structures like halls, industrial structures, stands, etc. grew significantly larger. At that time, the knowledge of material behaviour, durability and overall structural performance was substantially less developed than it is today. In many countries statically determined systems with a fragile behavior were designed for cast in situ as well as precast structures. Lack of redundancy resulted in a low level of robustness in structural systems. In addition, the technical level of individual technologies (e.g. grouting of prestressed cables) was lower than it is today. The number of concrete structures, including prestressed ones, is extremely high. Over time and with increased loading, the necessity of maintaining safety and performance parameters is impossible without careful maintenance, smaller interventions, strengthening and even larger reconstructions. Although some claim that unsatisfactory structures should be replaced by new ones, it is often impossible, as authorities, in general, have only limited resources. Most structures have to remain in service, probably even longer than initially expected. In order to keep the existing concrete structures in an acceptable condition, the development of methods for monitoring, inspection and assessment, structural identification, nonlinear analysis, life cycle evaluation and safety and prediction of the future behaviour, etc. is necessary. The scatter of individual input parameters must be considered as a whole. This requires probabilistic approaches to individual partial problems and to the overall analysis. The members of the fib Task Group 2.8 “Safety and performance concepts” wrote, on the basis of the actual knowledge and experience, a comprehensive document that provides crucial knowledge for existing structures, which is also applicable to new structures. This guide to good practice is divided into 10 basic chapters dealing with individual issues that are critical for activities associated with preferably existing concrete structures. Bulletin 86 starts with the specification of the performance-based requirements during the entire lifecycle. The risk issues are described in chapter two. An extensive part is devoted to structural reliability, including practical engineering approaches and reliability assessment of existing structures. Safety concepts for design consider the lifetime of structures and summarise safety formats from simple partial safety factors to develop approaches suitable for application in sophisticated, probabilistic, non-linear analyses. Testing for design and the determination of design values from the tests is an extremely important issue. This is especially true for the evaluation of existing structures. Inspection and monitoring of existing structures are essential for maintenance, for the prediction of remaining service life and for the planning of interventions. Chapter nine presents probabilistically-based models for material degradation processes. Finally, case studies are presented in chapter ten. The results of the concrete structures monitoring as well as their application for assessment and prediction of their future behaviour are shown. The risk analysis of highway bridges was based on extensive monitoring and numerical evaluation programs. Case studies perfectly illustrate the application of the methods presented in the Bulletin. The information provided in this guide is very useful for practitioners and scientists. It provides the reader with general procedures, from the specification of requirements, monitoring, assessment to the prediction of the structures’ lifecycles. However, one must have a sufficiently large amount of experimental and other data (e.g. construction experience) in order to use these methods correctly. This data finally allows for a statistical evaluation. As it is shown in case studies, extensive monitoring programs are necessary. The publication of this guide and other documents developed within the fib will hopefully help convince the authorities responsible for safe and fluent traffic on bridges and other structures that the costs spent in monitoring are first rather small, and second, they will repay in the form of a serious assessment providing necessary information for decision about maintenance and future of important structures.