Practical Finite Element Analysis

Practical Finite Element Analysis PDF

Author: Nitin S. Gokhale

Publisher: FINITE TO INFINITE

Published: 2008

Total Pages: 27

ISBN-13: 8190619500

DOWNLOAD EBOOK →

Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.

Finite Elements

Finite Elements PDF

Author: Richard MacNeal

Publisher: CRC Press

Published: 1993-10-28

Total Pages: 554

ISBN-13: 9780824791629

DOWNLOAD EBOOK →

In this work, MacNeal examines why finite elements sometimes fail and how element designers have corrected their failures. It includes quantitative analyses of failure modes and illustrations of possible side effects found in proposed remedies, providing a practical understanding of finite element performance. The book is designed to enable users and practitioners to identify and circumvent the major flaws of finite elements, such as locking, patch-test failure, spurious models, rigid-body failure, induced anisotropy and shape sensitivity.

Finite Elements I

Finite Elements I PDF

Author: Alexandre Ern

Publisher: Springer Nature

Published: 2021-03-22

Total Pages: 325

ISBN-13: 3030563413

DOWNLOAD EBOOK →

This book is the first volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume I is divided into 23 chapters plus two appendices on Banach and Hilbert spaces and on differential calculus. This volume focuses on the fundamental ideas regarding the construction of finite elements and their approximation properties. It addresses the all-purpose Lagrange finite elements, but also vector-valued finite elements that are crucial to approximate the divergence and the curl operators. In addition, it also presents and analyzes quasi-interpolation operators and local commuting projections. The volume starts with four chapters on functional analysis, which are packed with examples and counterexamples to familiarize the reader with the basic facts on Lebesgue integration and weak derivatives. Volume I also reviews important implementation aspects when either developing or using a finite element toolbox, including the orientation of meshes and the enumeration of the degrees of freedom.

Nonlinear Finite Elements for Continua and Structures

Nonlinear Finite Elements for Continua and Structures PDF

Author: Ted Belytschko

Publisher: John Wiley & Sons

Published: 2014-01-07

Total Pages: 834

ISBN-13: 1118632702

DOWNLOAD EBOOK →

Nonlinear Finite Elements for Continua and Structures p>Nonlinear Finite Elements for Continua and Structures This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended Finite Element Method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation- density-based crystalline plasticity. Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems. Key features: Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis Covers many of the material laws used in today’s software and research Introduces advanced topics in nonlinear finite element modelling of continua Introduction of multiresolution continuum theory and XFEM Accompanied by a website hosting a solution manual and MATLAB® and FORTRAN code Nonlinear Finite Elements for Continua and Structures, Second Edition is a must-have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners.

The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods PDF

Author: Susanne Brenner

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 369

ISBN-13: 1475736584

DOWNLOAD EBOOK →

A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

Finite Elements and Approximation

Finite Elements and Approximation PDF

Author: O. C. Zienkiewicz

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 356

ISBN-13: 048631801X

DOWNLOAD EBOOK →

A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises. Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher order finite element approximation, mapping and numerical integration, variational methods, and partial discretization and time-dependent problems. A survey of generalized finite elements and error estimates concludes the text.

Financial Engineering with Finite Elements

Financial Engineering with Finite Elements PDF

Author: Jürgen Topper

Publisher: John Wiley & Sons

Published: 2005-04

Total Pages: 398

ISBN-13:

DOWNLOAD EBOOK →

The pricing of derivative instruments has always been a highly complex and time-consuming activity. Advances in technology, however, have enabled much quicker and more accurate pricing through mathematical rather than analytical models. In this book, the author bridges the divide between finance and mathematics by applying this proven mathematical technique to the financial markets. Utilising practical examples, the author systematically describes the processes involved in a manner accessible to those without a deep understanding of mathematics. * Explains little understood techniques that will assist in the accurate more speedy pricing of options * Centres on the practical application of these useful techniques * Offers a detailed and comprehensive account of the methods involved and is the first to explore the application of these particular techniques to the financial markets

Finite Elements III

Finite Elements III PDF

Author: Alexandre Ern

Publisher: Springer Nature

Published: 2021-03-29

Total Pages: 417

ISBN-13: 3030573486

DOWNLOAD EBOOK →

This book is the third volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume III is divided into 28 chapters. The first eight chapters focus on the symmetric positive systems of first-order PDEs called Friedrichs' systems. This part of the book presents a comprehensive and unified treatment of various stabilization techniques from the existing literature. It discusses applications to advection and advection-diffusion equations and various PDEs written in mixed form such as Darcy and Stokes flows and Maxwell's equations. The remainder of Volume III addresses time-dependent problems: parabolic equations (such as the heat equation), evolution equations without coercivity (Stokes flows, Friedrichs' systems), and nonlinear hyperbolic equations (scalar conservation equations, hyperbolic systems). It offers a fresh perspective on the analysis of well-known time-stepping methods. The last five chapters discuss the approximation of hyperbolic equations with finite elements. Here again a new perspective is proposed. These chapters should convince the reader that finite elements offer a good alternative to finite volumes to solve nonlinear conservation equations.

An Introduction to the Mathematical Theory of Finite Elements

An Introduction to the Mathematical Theory of Finite Elements PDF

Author: J. T. Oden

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 450

ISBN-13: 0486142213

DOWNLOAD EBOOK →

This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.