Failure Mechanisms in Semiconductor Devices

Failure Mechanisms in Semiconductor Devices PDF

Author: E. Ajith Amerasekera

Publisher: John Wiley & Sons

Published: 1997-08-04

Total Pages: 368

ISBN-13:

DOWNLOAD EBOOK →

Failure Mechanisms in Semiconductor Devices Second Edition E. Ajith Amerasekera Texas Instruments Inc., Dallas, USA Farid N. Najm University of Illinois at Urbana-Champaign, USA Since the successful first edition of Failure Mechanisms in Semiconductor Devices, semiconductor technology has become increasingly important. The high complexity of today's integrated circuits has engendered a demand for greater component reliability. Reflecting the need for guaranteed performance in consumer applications, this thoroughly updated edition includes more detailed material on reliability modelling and prediction. The book analyses the main failure mechanisms in terms of cause, effects and prevention and explains the mathematics behind reliability analysis. The authors detail methodologies for the identification of failures and describe the approaches for building reliability into semiconductor devices. Their thorough yet accessible text covers the physics of failure mechanisms from the semiconductor die itself to the packaging and interconnections. Incorporating recent advances, this comprehensive survey of semiconductor reliability will be an asset to both engineers and graduate students in the field.

Failure Mechanisms in Semiconductor Devices

Failure Mechanisms in Semiconductor Devices PDF

Author: E. Ajith Amerasekera

Publisher: Wiley

Published: 1987-12-28

Total Pages: 220

ISBN-13: 9780471914341

DOWNLOAD EBOOK →

Thoroughly surveys the physics of failure mechanisms in semiconductor devices, from the semiconductor dye itself to the packaging and interconnections. Its specific intention is to identify the processes leading to damage and the techniques used to repair or detect it. Discusses and critiques accelerated lifetesting and how the various tests apply to different failure mechanisms. Also provides a critical review of reliability modelling and estimation and techniques, and quality assurance and screening techniques, emphasizing the complexity of present-generation integrated circuits. Throughout, suggestions are offered on ways to improve the quality of devices.

Semiconductor Device Reliability

Semiconductor Device Reliability PDF

Author: A. Christou

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 571

ISBN-13: 9400924828

DOWNLOAD EBOOK →

This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific Affairs Division of NATO. We are indebted to NATO for their support and to Dr. Craig Sinclair, who admin isters this program. The chapters of this book follow the format and order of the sessions of the meeting. Thirty-six papers were presented and discussed during the five-day Workshop. In addi tion, two panel sessions were held, with audience participation, where the particularly controversial topics of bum-in and reliability modeling and prediction methods were dis cussed. A brief review of these sessions is presented in this book.

Reliability of Electronic Packages and Semiconductor Devices

Reliability of Electronic Packages and Semiconductor Devices PDF

Author: Giulio Di Giacomo

Publisher: McGraw-Hill Professional Publishing

Published: 1997

Total Pages: 0

ISBN-13: 9780070170247

DOWNLOAD EBOOK →

This text looks at predicting and extending the functional life of semiconductor components. Using empirical modelling, the author covers major types of failure mechanisms that can greatly reduce the active life of semiconductor components, including interconnection fatigue and electromigration.

Reliability and Failure of Electronic Materials and Devices

Reliability and Failure of Electronic Materials and Devices PDF

Author: Milton Ohring

Publisher: Academic Press

Published: 2014-10-14

Total Pages: 759

ISBN-13: 0080575528

DOWNLOAD EBOOK →

Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites

ESD

ESD PDF

Author: Steven H. Voldman

Publisher: John Wiley & Sons

Published: 2009-07-01

Total Pages: 411

ISBN-13: 0470747269

DOWNLOAD EBOOK →

Electrostatic discharge (ESD) failure mechanisms continue to impact semiconductor components and systems as technologies scale from micro- to nano-electronics. This book studies electrical overstress, ESD, and latchup from a failure analysis and case-study approach. It provides a clear insight into the physics of failure from a generalist perspective, followed by investigation of failure mechanisms in specific technologies, circuits, and systems. The book is unique in covering both the failure mechanism and the practical solutions to fix the problem from either a technology or circuit methodology. Look inside for extensive coverage on: failure analysis tools, EOS and ESD failure sources and failure models of semiconductor technology, and how to use failure analysis to design more robust semiconductor components and systems; electro-thermal models and technologies; the state-of-the-art technologies discussed include CMOS, BiCMOS, silicon on insulator (SOI), bipolar technology, high voltage CMOS (HVCMOS), RF CMOS, smart power, gallium arsenide (GaAs), gallium nitride (GaN), magneto-resistive (MR) , giant magneto-resistors (GMR), tunneling magneto-resistor (TMR), devices; micro electro-mechanical (MEM) systems, and photo-masks and reticles; practical methods to use failure analysis for the understanding of ESD circuit operation, temperature analysis, power distribution, ground rule development, internal bus distribution, current path analysis, quality metrics, (connecting the theoretical to the practical analysis); the failure of each key element of a technology from passives, active elements to the circuit, sub-system to package, highlighted by case studies of the elements, circuits and system-on-chip (SOC) in today’s products. ESD: Failure Mechanisms and Models is a continuation of the author’s series of books on ESD protection. It is an essential reference and a useful insight into the issues that confront modern technology as we enter the Nano-electronic era.

Failure Modes and Mechanisms in Electronic Packages

Failure Modes and Mechanisms in Electronic Packages PDF

Author: P. Singh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 391

ISBN-13: 1461560292

DOWNLOAD EBOOK →

With the proliferation of packaging technology, failure and reliability have become serious concerns. This invaluable reference details processes that enable detection, analysis and prevention of failures. It provides a comprehensive account of the failures of device packages, discrete component connectors, PCB carriers and PCB assemblies.

Guidebook for Managing Silicon Chip Reliability

Guidebook for Managing Silicon Chip Reliability PDF

Author: Michael Pecht

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 205

ISBN-13: 1351443569

DOWNLOAD EBOOK →

Achieving cost-effective performance over time requires an organized, disciplined, and time-phased approach to product design, development, qualification, manufacture, and in-service management. Guidebook for Managing Silicon Chip Reliability examines the principal failure mechanisms associated with modern integrated circuits and describes common practices used to resolve them. This quick reference on semiconductor reliability addresses the key question: How will the understanding of failure mechanisms affect the future? Chapters discuss: failure sites, operational loads, and failure mechanism intrinsic device sensitivities electromigration hot carrier aging time dependent dielectric breakdown mechanical stress induced migration alpha particle sensitivity electrostatic discharge (ESD) and electrical overstress latch-up qualification screening guidelines for designing reliability Guidebook for Managing Silicon Chip Reliability focuses on device failure and causes throughout - providing a thorough framework on how to model the mechanism, test for defects, and avoid and manage damage. It will serve as an exceptional resource for electrical engineers as well as mechanical engineers working in the field of electronic packaging.

Failure Analysis

Failure Analysis PDF

Author: Marius Bazu

Publisher: John Wiley & Sons

Published: 2011-03-08

Total Pages: 372

ISBN-13: 1119990009

DOWNLOAD EBOOK →

Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.