Experimental Methods of Shock Wave Research

Experimental Methods of Shock Wave Research PDF

Author: Ozer Igra

Publisher: Springer

Published: 2015-10-31

Total Pages: 480

ISBN-13: 3319237454

DOWNLOAD EBOOK →

This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

Handbook of Shock Waves, Three Volume Set

Handbook of Shock Waves, Three Volume Set PDF

Author: Gabi Ben-Dor

Publisher: Elsevier

Published: 2000-10-18

Total Pages: 2188

ISBN-13: 0080533728

DOWNLOAD EBOOK →

The Handbook of Shock Waves contains a comprehensive, structured coverage of research topics related to shock wave phenomena including shock waves in gases, liquids, solids, and space. Shock waves represent an extremely important physical phenomena which appears to be of special practical importance in three major fields: compressible flow (aerodynamics), materials science, and astrophysics. Shock waves comprise a phenomenon that occurs when pressure builds to force a reaction, i.e. sonic boom that occurs when a jet breaks the speed of sound.This Handbook contains experimental, theoretical, and numerical results which never before appeared under one cover; the first handbook of its kind.The Handbook of Shock Waves is intended for researchers and engineers active in shock wave related fields. Additionally, R&D establishments, applied science & research laboratories and scientific and engineering libraries both in universities and government institutions. As well as, undergraduate and graduate students in fluid mechanics, gas dynamics, and physics. Key Features* Ben-Dor is known as one of the founders of the field of shock waves* Covers a broad spectrum of shock wave research topics* Provides a comprehensive description of various shock wave related subjects* First handbook ever to include under one separate cover: experimental, theoretical, and numerical results

Fundamentals of Shock Wave Propagation in Solids

Fundamentals of Shock Wave Propagation in Solids PDF

Author: Lee Davison

Publisher: Springer Science & Business Media

Published: 2008-04-24

Total Pages: 439

ISBN-13: 3540745696

DOWNLOAD EBOOK →

My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.

Shock Wave Interaction with a Fluid Filled Cylinder Experimental Methods

Shock Wave Interaction with a Fluid Filled Cylinder Experimental Methods PDF

Author: Praveen Kumar Baba Siddabattuni

Publisher:

Published: 2016

Total Pages: 46

ISBN-13:

DOWNLOAD EBOOK →

In the recent wars of Iraq and Afghanistan, many soldiers sustained bTBI (blast-induced traumatic brain injury). The blasts are created by extensive use of improvised explosive devices (IED’s). Whether pure blast-shock waves cause TBI or what is the mechanism of injury are not fully known. Research efforts are underway to find answers to these questions. The primary objective of this project is to understand how the shockwave interacts with a fluid-filled cylinder of different thicknesses. Here, the cylinder is idealized as head and the fluid filled inside it as the brain material. The primary interest here is, how the pure shockwave behaves when a cylinder is exposed to different incident blast over-pressures. The question raised in this work is whether primary blast wave causes for TBI? The pressure response inside the cylinder and the deformations for different thicknesses exposing at different blast loadings are taken into account in answering this question. Polycarbonate is chosen to simulate human skull. De-ionized water is used as the fluid as its mechanical property is close to that of brain. As the human head varies in thickness from 4mm in the temporal region to 8mm in the occipital region of the skull, two different thickness polycarbonate cylinders have been used to mimic that variation. All the experiments are done in the blast tube where the shockwaves are produced in the test section. Pure shock wave due to explosives in free field conditions will have a Friedlander wave form which will be artificially generated in 9 inch shock tube. High speed cameras are used for capturing motion of the cylinder during shock loading. Two different pressures 20 psi (140 kPa) and 30 psi (210 kPa) are used as the peak blast overpressures with two different thickness 1.9 and 3.3mm and diameter of the cylinder is 50mm. Pressure in the fluid is measured at three different locations whereas strain gages measure deformations at three sites. Analysis of data indicate that the pressure in the fluid is affected by not only the external pressure but also thickness of the cylinder. Thus, the pressure is affected by both direct transmission as well as cylinder deformation.

Shock Waves

Shock Waves PDF

Author: W. M. Isbell

Publisher: Imperial College Press

Published: 2005

Total Pages: 344

ISBN-13: 186094471X

DOWNLOAD EBOOK →

This book presents, in a concise and comprehensive manner, the essential techniques by which shock wave physicists probe the boundaries of material response to impulsive loads. The author is a well-known figure in shock wave physics, having worked for over forty years with many of the outstanding researchers in the field.The book acquaints readers both with modern instrumentation techniques including interferometers such as the DISAR and the VISAR ? and with methods that have been established by previous generations of experimentalists ? including acoustic measurement techniques and low to moderate strain rate machines.Besides an exposition of the theoretical aspects of shock wave phenomena, it contains large amounts of data on equations of state, spallation thresholds, shock wave attenuation from very high pressures, and elastic constants. Much of this information has been previously unavailable in open publications.The text documents the transition from testing performed with explosives to the use of modern compressed gas guns, which permit much more detailed diagnostics and controlled conditions. In particular, the author pioneered the use of two-stage light gas guns which launch high-density plates against specimens located at the muzzle. The high launch velocity of these guns produced data that represents the highest pressures obtained in the free world at that time.

Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions PDF

Author: Holger Babinsky

Publisher: Cambridge University Press

Published: 2011-09-12

Total Pages: 481

ISBN-13: 1139498649

DOWNLOAD EBOOK →

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.

Intense Shock Waves on Earth and in Space

Intense Shock Waves on Earth and in Space PDF

Author: Vladimir Fortov

Publisher: Springer Nature

Published: 2021-05-26

Total Pages: 388

ISBN-13: 3030748405

DOWNLOAD EBOOK →

This book focuses on the non-traditional branches of physics and mechanics of shock waves that have arisen recently in connection with the intensive study of these waves in a wide variety of phenomena - from nuclear matter to clusters of galaxies. The book is devoted to the various physical phenomena and properties of intense shock waves. The author addresses methods of generation, diagnostics, as well as theoretical methods for describing shock waves at extremely high pressures and temperatures in laboratory and quasi-laboratory conditions. The state of materials with high energy density generated by shock wave compression is discussed. In addition, the book aims to systematize, generalize, and describe from a universal viewpoint the extensive theoretical and experimental material on the physics of high energy densities - the physics and mechanics of intense shock waves. The book is based on lectures delivered by the author at the Moscow Institute of Physics and Technology, the Higher School of Physics of Rosatom State Nuclear Energy Corporation, as well as overviews presented at many scientific conferences and symposia. It is useful to a wide range of researchers in natural sciences, giving them access to original works and allowing them to navigate the fascinating problems of the modern science of intense shock waves.

Transition Location Effect on Shock Wave Boundary Layer Interaction

Transition Location Effect on Shock Wave Boundary Layer Interaction PDF

Author: Piotr Doerffer

Publisher: Springer Nature

Published: 2020-07-30

Total Pages: 540

ISBN-13: 3030474615

DOWNLOAD EBOOK →

This book presents experimental and numerical findings on reducing shock-induced separation by applying transition upstream the shock wave. The purpose is to find out how close to the shock wave the transition should be located in order to obtain favorable turbulent boundary layer interaction. The book shares findings obtained using advanced flow measurement methods and concerning e.g. the transition location, boundary layer characteristics, and the detection of shock wave configurations. It includes a number of experimental case studies and CFD simulations that offer valuable insights into the flow structure. It covers RANS/URANS methods for the experimental test section design, as well as more advanced techniques, such as LES, hybrid methods and DNS for studying the transition and shock wave interaction in detail. The experimental and numerical investigations presented here were conducted by sixteen different partners in the context of the TFAST Project. The general focus is on determining if and how it is possible to improve flow performance in comparison to laminar interaction. The book mainly addresses academics and professionals whose work involves the aerodynamics of internal and external flows, as well as experimentalists working with compressible flows. It will also be of benefit for CFD developers and users, and for students of aviation and propulsion systems alike.

Shock Wave Compression of Condensed Matter

Shock Wave Compression of Condensed Matter PDF

Author: Jerry W Forbes

Publisher: Springer Science & Business Media

Published: 2013-02-01

Total Pages: 388

ISBN-13: 3642325351

DOWNLOAD EBOOK →

This book introduces the core concepts of the shock wave physics of condensed matter, taking a continuum mechanics approach to examine liquids and isotropic solids. The text primarily focuses on one-dimensional uniaxial compression in order to show the key features of condensed matter’s response to shock wave loading. The first four chapters are specifically designed to quickly familiarize physical scientists and engineers with how shock waves interact with other shock waves or material boundaries, as well as to allow readers to better understand shock wave literature, use basic data analysis techniques, and design simple 1-D shock wave experiments. This is achieved by first presenting the steady one-dimensional strain conservation laws using shock wave impedance matching, which insures conservation of mass, momentum and energy. Here, the initial emphasis is on the meaning of shock wave and mass velocities in a laboratory coordinate system. An overview of basic experimental techniques for measuring pressure, shock velocity, mass velocity, compression and internal energy of steady 1-D shock waves is then presented. In the second part of the book, more advanced topics are progressively introduced: thermodynamic surfaces are used to describe equilibrium flow behavior, first-order Maxwell solid models are used to describe time-dependent flow behavior, descriptions of detonation shock waves in ideal and non-ideal explosives are provided, and lastly, a select group of current issues in shock wave physics are discussed in the final chapter.