Euclidean Distance Matrices and Their Applications in Rigidity Theory

Euclidean Distance Matrices and Their Applications in Rigidity Theory PDF

Author: Abdo Y. Alfakih

Publisher: Springer

Published: 2018-10-13

Total Pages: 251

ISBN-13: 3319978462

DOWNLOAD EBOOK →

This book offers a comprehensive and accessible exposition of Euclidean Distance Matrices (EDMs) and rigidity theory of bar-and-joint frameworks. It is based on the one-to-one correspondence between EDMs and projected Gram matrices. Accordingly the machinery of semidefinite programming is a common thread that runs throughout the book. As a result, two parallel approaches to rigidity theory are presented. The first is traditional and more intuitive approach that is based on a vector representation of point configuration. The second is based on a Gram matrix representation of point configuration. Euclidean Distance Matrices and Their Applications in Rigidity Theory begins by establishing the necessary background needed for the rest of the book. The focus of Chapter 1 is on pertinent results from matrix theory, graph theory and convexity theory, while Chapter 2 is devoted to positive semidefinite (PSD) matrices due to the key role these matrices play in our approach. Chapters 3 to 7 provide detailed studies of EDMs, and in particular their various characterizations, classes, eigenvalues and geometry. Chapter 8 serves as a transitional chapter between EDMs and rigidity theory. Chapters 9 and 10 cover local and universal rigidities of bar-and-joint frameworks. This book is self-contained and should be accessible to a wide audience including students and researchers in statistics, operations research, computational biochemistry, engineering, computer science and mathematics.

Distance Geometry

Distance Geometry PDF

Author: Antonio Mucherino

Publisher: Springer Science & Business Media

Published: 2012-12-22

Total Pages: 436

ISBN-13: 1461451280

DOWNLOAD EBOOK →

This volume is a collection of research surveys on the Distance Geometry Problem (DGP) and its applications. It will be divided into three parts: Theory, Methods and Applications. Each part will contain at least one survey and several research papers. The first part, Theory, will deal with theoretical aspects of the DGP, including a new class of problems and the study of its complexities as well as the relation between DGP and other related topics, such as: distance matrix theory, Euclidean distance matrix completion problem, multispherical structure of distance matrices, distance geometry and geometric algebra, algebraic distance geometry theory, visualization of K-dimensional structures in the plane, graph rigidity, and theory of discretizable DGP: symmetry and complexity. The second part, Methods, will discuss mathematical and computational properties of methods developed to the problems considered in the first chapter including continuous methods (based on Gaussian and hyperbolic smoothing, difference of convex functions, semidefinite programming, branch-and-bound), discrete methods (based on branch-and-prune, geometric build-up, graph rigidity), and also heuristics methods (based on simulated annealing, genetic algorithms, tabu search, variable neighborhood search). Applications will comprise the third part and will consider applications of DGP to NMR structure calculation, rational drug design, molecular dynamics simulations, graph drawing and sensor network localization. This volume will be the first edited book on distance geometry and applications. The editors are in correspondence with the major contributors to the field of distance geometry, including important research centers in molecular biology such as Institut Pasteur in Paris.

Euclidean Distance Geometry

Euclidean Distance Geometry PDF

Author: Leo Liberti

Publisher: Springer

Published: 2017-09-20

Total Pages: 133

ISBN-13: 3319607928

DOWNLOAD EBOOK →

This textbook, the first of its kind, presents the fundamentals of distance geometry: theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several. Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.

Rigidity Theory and Applications

Rigidity Theory and Applications PDF

Author: M.F. Thorpe

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 435

ISBN-13: 0306470896

DOWNLOAD EBOOK →

Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.

Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario's

Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario's PDF

Author: Pradeep Kumar Singh

Publisher: Springer Nature

Published: 2020-02-08

Total Pages: 722

ISBN-13: 303040305X

DOWNLOAD EBOOK →

This book explores various challenging problems and applications areas of wireless sensor networks (WSNs), and identifies the current issues and future research challenges. Discussing the latest developments and advances, it covers all aspects of in WSNs, from architecture to protocols design, and from algorithm development to synchronization issues. As such the book is an essential reference resource for undergraduate and postgraduate students as well as scholars and academics working in the field.

Handbook of Geometric Constraint Systems Principles

Handbook of Geometric Constraint Systems Principles PDF

Author: Meera Sitharam

Publisher: CRC Press

Published: 2018-07-20

Total Pages: 605

ISBN-13: 1498738923

DOWNLOAD EBOOK →

The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.

Sensors: Theory, Algorithms, and Applications

Sensors: Theory, Algorithms, and Applications PDF

Author: Vladimir L. Boginski

Publisher: Springer Science & Business Media

Published: 2011-11-24

Total Pages: 245

ISBN-13: 0387886192

DOWNLOAD EBOOK →

The objective of this book is to advance the current knowledge of sensor research particularly highlighting recent advances, current work, and future needs. The goal is to share current technologies and steer future efforts in directions that will benefit the majority of researchers and practitioners working in this broad field of study.

Convex Optimization & Euclidean Distance Geometry

Convex Optimization & Euclidean Distance Geometry PDF

Author: Jon Dattorro

Publisher: Lulu.com

Published: 2010-06-09

Total Pages: 734

ISBN-13: 0615193684

DOWNLOAD EBOOK →

Convex Analysis is the calculus of inequalities while Convex Optimization is its application. Analysis is inherently the domain of the mathematician while Optimization belongs to the engineer. In layman’s terms, the mathematical science of Optimization is the study of how to make a good choice when confronted with conflicting requirements. The qualifier Convex means: when an optimal solution is found, then it is guaranteed to be a best solution; there is no better choice. Any Convex Optimization problem has geometric interpretation. Conversely, recent advances in geometry and in graph theory hold Convex Optimization within their proofs’ core. This book is about Convex Optimization, convex geometry (with particular attention to distance geometry), and nonconvex, combinatorial, and geometrical problems that can be relaxed or transformed into convex problems. A virtual flood of new applications follows by epiphany that many problems, presumed nonconvex, can be so transformed. International Edition III

A Dynamical Approach to Random Matrix Theory

A Dynamical Approach to Random Matrix Theory PDF

Author: László Erdős

Publisher: American Mathematical Soc.

Published: 2017-08-30

Total Pages: 226

ISBN-13: 1470436485

DOWNLOAD EBOOK →

A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

Robust Optimization-Directed Design

Robust Optimization-Directed Design PDF

Author: Andrew J. Kurdila

Publisher: Springer Science & Business Media

Published: 2006-06-04

Total Pages: 279

ISBN-13: 0387286543

DOWNLOAD EBOOK →

Robust design—that is, managing design uncertainties such as model uncertainty or parametric uncertainty—is the often unpleasant issue crucial in much multidisciplinary optimal design work. Recently, there has been enormous practical interest in strategies for applying optimization tools to the development of robust solutions and designs in several areas, including aerodynamics, the integration of sensing (e.g., laser radars, vision-based systems, and millimeter-wave radars) and control, cooperative control with poorly modeled uncertainty, cascading failures in military and civilian applications, multi-mode seekers/sensor fusion, and data association problems and tracking systems. The contributions to this book explore these different strategies. The expression "optimization-directed” in this book’s title is meant to suggest that the focus is not agonizing over whether optimization strategies identify a true global optimum, but rather whether these strategies make significant design improvements.