Essential Wavelets for Statistical Applications and Data Analysis

Essential Wavelets for Statistical Applications and Data Analysis PDF

Author: Todd Ogden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 218

ISBN-13: 1461207096

DOWNLOAD EBOOK →

I once heard the book by Meyer (1993) described as a "vulgarization" of wavelets. While this is true in one sense of the word, that of making a sub ject popular (Meyer's book is one of the early works written with the non specialist in mind), the implication seems to be that such an attempt some how cheapens or coarsens the subject. I have to disagree that popularity goes hand-in-hand with debasement. is certainly a beautiful theory underlying wavelet analysis, there is While there plenty of beauty left over for the applications of wavelet methods. This book is also written for the non-specialist, and therefore its main thrust is toward wavelet applications. Enough theory is given to help the reader gain a basic understanding of how wavelets work in practice, but much of the theory can be presented using only a basic level of mathematics. Only one theorem is for mally stated in this book, with only one proof. And these are only included to introduce some key concepts in a natural way.

Wavelets, Approximation, and Statistical Applications

Wavelets, Approximation, and Statistical Applications PDF

Author: Wolfgang Härdle

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 276

ISBN-13: 1461222222

DOWNLOAD EBOOK →

The mathematical theory of ondelettes (wavelets) was developed by Yves Meyer and many collaborators about 10 years ago. It was designed for ap proximation of possibly irregular functions and surfaces and was successfully applied in data compression, turbulence analysis, image and signal process ing. Five years ago wavelet theory progressively appeared to be a power ful framework for nonparametric statistical problems. Efficient computa tional implementations are beginning to surface in this second lustrum of the nineties. This book brings together these three main streams of wavelet theory. It presents the theory, discusses approximations and gives a variety of statistical applications. It is the aim of this text to introduce the novice in this field into the various aspects of wavelets. Wavelets require a highly interactive computing interface. We present therefore all applications with software code from an interactive statistical computing environment. Readers interested in theory and construction of wavelets will find here in a condensed form results that are somewhat scattered around in the research literature. A practioner will be able to use wavelets via the available software code. We hope therefore to address both theory and practice with this book and thus help to construct bridges between the different groups of scientists. This te. xt grew out of a French-German cooperation (Seminaire Paris Berlin, Seminar Berlin-Paris). This seminar brings together theoretical and applied statisticians from Berlin and Paris. This work originates in the first of these seminars organized in Garchy, Burgundy in 1994.

Wavelets and Statistics

Wavelets and Statistics PDF

Author: Anestis Antoniadis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 407

ISBN-13: 1461225442

DOWNLOAD EBOOK →

Despite its short history, wavelet theory has found applications in a remarkable diversity of disciplines: mathematics, physics, numerical analysis, signal processing, probability theory and statistics. The abundance of intriguing and useful features enjoyed by wavelet and wavelet packed transforms has led to their application to a wide range of statistical and signal processing problems. On November 16-18, 1994, a conference on Wavelets and Statistics was held at Villard de Lans, France, organized by the Institute IMAG-LMC, Grenoble, France. The meeting was the 15th in the series of the Rencontres Pranco-Belges des 8tatisticiens and was attended by 74 mathematicians from 12 different countries. Following tradition, both theoretical statistical results and practical contributions of this active field of statistical research were presented. The editors and the local organizers hope that this volume reflects the broad spectrum of the conference. as it includes 21 articles contributed by specialists in various areas in this field. The material compiled is fairly wide in scope and ranges from the development of new tools for non parametric curve estimation to applied problems, such as detection of transients in signal processing and image segmentation. The articles are arranged in alphabetical order by author rather than subject matter. However, to help the reader, a subjective classification of the articles is provided at the end of the book. Several articles of this volume are directly or indirectly concerned with several as pects of wavelet-based function estimation and signal denoising.

Statistical Modeling by Wavelets

Statistical Modeling by Wavelets PDF

Author: Brani Vidakovic

Publisher: John Wiley & Sons

Published: 2009-09-25

Total Pages: 410

ISBN-13: 0470317868

DOWNLOAD EBOOK →

A comprehensive, step-by-step introduction to wavelets in statistics. What are wavelets? What makes them increasingly indispensable in statistical nonparametrics? Why are they suitable for "time-scale" applications? How are they used to solve such problems as denoising, regression, or density estimation? Where can one find up-to-date information on these newly "discovered" mathematical objects? These are some of the questions Brani Vidakovic answers in Statistical Modeling by Wavelets. Providing a much-needed introduction to the latest tools afforded statisticians by wavelet theory, Vidakovic compiles, organizes, and explains in depth research data previously available only in disparate journal articles. He carefully balances both statistical and mathematical techniques, supplementing the material with a wealth of examples, more than 100 illustrations, and extensive references-with data sets and S-Plus wavelet overviews made available for downloading over the Internet. Both introductory and data-oriented modeling topics are featured, including: * Continuous and discrete wavelet transformations. * Statistical optimality properties of wavelet shrinkage. * Theoretical aspects of wavelet density estimation. * Bayesian modeling in the wavelet domain. * Properties of wavelet-based random functions and densities. * Several novel and important wavelet applications in statistics. * Wavelet methods in time series. Accessible to anyone with a background in advanced calculus and algebra, Statistical Modeling by Wavelets promises to become the standard reference for statisticians and engineers seeking a comprehensive introduction to an emerging field.

Wavelet Analysis And Its Applications (In 2 Vols), Proceedings Of The Third International Conference On Waa

Wavelet Analysis And Its Applications (In 2 Vols), Proceedings Of The Third International Conference On Waa PDF

Author: Li Jian Ping

Publisher: World Scientific

Published: 2003-04-11

Total Pages: 1056

ISBN-13: 9814486205

DOWNLOAD EBOOK →

This book captures the essence of the current state of research in wavelet analysis and its applications, and identifies the changes and opportunities - both current and future - in the field. Distinguished researchers such as Prof John Daugman from Cambridge University and Prof Victor Wickerhauser from Washington University present their research papers.

Wavelet Methods in Statistics with R

Wavelet Methods in Statistics with R PDF

Author: Guy Nason

Publisher: Springer Science & Business Media

Published: 2010-07-25

Total Pages: 259

ISBN-13: 0387759611

DOWNLOAD EBOOK →

This book contains information on how to tackle many important problems using a multiscale statistical approach. It focuses on how to use multiscale methods and discusses methodological and applied considerations.

Wavelet Methods for Time Series Analysis

Wavelet Methods for Time Series Analysis PDF

Author: Donald B. Percival

Publisher: Cambridge University Press

Published: 2006-02-27

Total Pages: 628

ISBN-13: 1107717396

DOWNLOAD EBOOK →

This introduction to wavelet analysis 'from the ground level and up', and to wavelet-based statistical analysis of time series focuses on practical discrete time techniques, with detailed descriptions of the theory and algorithms needed to understand and implement the discrete wavelet transforms. Numerous examples illustrate the techniques on actual time series. The many embedded exercises - with complete solutions provided in the Appendix - allow readers to use the book for self-guided study. Additional exercises can be used in a classroom setting. A Web site offers access to the time series and wavelets used in the book, as well as information on accessing software in S-Plus and other languages. Students and researchers wishing to use wavelet methods to analyze time series will find this book essential.

Nonparametric Statistics with Applications to Science and Engineering with R

Nonparametric Statistics with Applications to Science and Engineering with R PDF

Author: Paul Kvam

Publisher: John Wiley & Sons

Published: 2022-10-18

Total Pages: 452

ISBN-13: 1119268133

DOWNLOAD EBOOK →

NONPARAMETRIC STATISTICS WITH APPLICATIONS TO SCIENCE AND ENGINEERING WITH R Introduction to the methods and techniques of traditional and modern nonparametric statistics, incorporating R code Nonparametric Statistics with Applications to Science and Engineering with R presents modern nonparametric statistics from a practical point of view, with the newly revised edition including custom R functions implementing nonparametric methods to explain how to compute them and make them more comprehensible. Relevant built-in functions and packages on CRAN are also provided with a sample code. R codes in the new edition not only enable readers to perform nonparametric analysis easily, but also to visualize and explore data using R’s powerful graphic systems, such as ggplot2 package and R base graphic system. The new edition includes useful tables at the end of each chapter that help the reader find data sets, files, functions, and packages that are used and relevant to the respective chapter. New examples and exercises that enable readers to gain a deeper insight into nonparametric statistics and increase their comprehension are also included. Some of the sample topics discussed in Nonparametric Statistics with Applications to Science and Engineering with R include: Basics of probability, statistics, Bayesian statistics, order statistics, Kolmogorov–Smirnov test statistics, rank tests, and designed experiments Categorical data, estimating distribution functions, density estimation, least squares regression, curve fitting techniques, wavelets, and bootstrap sampling EM algorithms, statistical learning, nonparametric Bayes, WinBUGS, properties of ranks, and Spearman coefficient of rank correlation Chi-square and goodness-of-fit, contingency tables, Fisher exact test, MC Nemar test, Cochran’s test, Mantel–Haenszel test, and Empirical Likelihood Nonparametric Statistics with Applications to Science and Engineering with R is a highly valuable resource for graduate students in engineering and the physical and mathematical sciences, as well as researchers who need a more comprehensive, but succinct understanding of modern nonparametric statistical methods.

Wavelets from a Statistical Perspective

Wavelets from a Statistical Perspective PDF

Author: Maarten Jansen

Publisher: CRC Press

Published: 2022-04-18

Total Pages: 474

ISBN-13: 1000564177

DOWNLOAD EBOOK →

Wavelets from a Statistical Perspective offers a modern, 2nd generation look on wavelets, far beyond the rigid setting of the equispaced, dyadic wavelets in the early days. With the methods of this book, based on the lifting scheme, researchers can set up a wavelet or another multiresolution analysis adapted to their data, ranging from images to scattered data or other irregularly spaced observations. Whereas classical wavelets stand a bit apart from other nonparametric methods, this book adds a multiscale touch to your spline, kernel or local polynomial smoothing procedure, thereby extending its applicability to nonlinear, nonparametric processing for piecewise smooth data. One of the chapters of the book constructs B-spline wavelets on nonequispaced knots and multiscale local polynomial transforms. In another chapter, the link between wavelets and Fourier analysis, ubiquitous in the classical approach, is explained, but without being inevitable. In further chapters the discrete wavelet transform is contrasted with the continuous version, the nondecimated (or maximal overlap) transform taking an intermediate position. An important principle in designing a wavelet analysis through the lifting scheme is finding the right balance between bias and variance. Bias and variance also play a crucial role in the nonparametric smoothing in a wavelet framework, in finding well working thresholds or other smoothing parameters. The numerous illustrations can be reproduced with the online available, accompanying software. The software and the exercises can also be used as a starting point in the further exploration of the material.