Essential Mathematics for NMR and MRI Spectroscopists

Essential Mathematics for NMR and MRI Spectroscopists PDF

Author: Keith C Brown

Publisher: Royal Society of Chemistry

Published: 2020-08-28

Total Pages: 884

ISBN-13: 1839162961

DOWNLOAD EBOOK →

Beginning with a review of the important areas of mathematics, this book then covers many of the underlying theoretical and practical aspects of NMR and MRI spectroscopy from a maths point of view. Competence in algebra and introductory calculus is needed but all other maths concepts are covered. It will bridge a gap between high level and introductory titles used in NMR or MRI spectroscopy. Uniquely, it takes a very careful and pedagogical approach to the mathematics behind NMR and MRI. It leaves out very few steps, which distinguishes it from other books in the field. The author is an NMR laboratory manager and is sympathetic to the frustrations of trying to understand where some of the fundamental equations come from hence his desire to either explicitly derive all equations for the reader or direct them to derivations. This is an essential text aimed at graduate students who are beginning their careers in NMR or MRI spectroscopy and laboratory managers if they need an understanding of the theoretical foundations of the technique.

Pharmacognosy

Pharmacognosy PDF

Author: Simone Badal McCreath

Publisher: Elsevier

Published: 2023-10-13

Total Pages: 847

ISBN-13: 0443186588

DOWNLOAD EBOOK →

Pharmacognosy: Fundamentals, Applications and Strategies, Second Edition represents a comprehensive compilation of the philosophical, scientific and technological aspects of contemporary pharmacognosy. The book examines the impact of the advanced techniques of pharmacognosy on improving the quality, safety and effectiveness of traditional medicines, and how pharmacokinetics and pharmacodynamics have a crucial role to play in discerning the relationships of active metabolites to bioavailability and function at the active sites, as well as the metabolism of plant constituents. Structured in seven parts, the book covers the foundational aspects of Pharmacognosy, the chemistry of plant metabolites, their effects, other sources of metabolites, crude drugs from animals, basic animal anatomy and physiology, technological applications and biotechnology, and the current trends in research. New to this edition is a chapter on plant metabolites and SARS-Cov-2, extensive updates on existing chapters and the development of a Laboratory Guide to support instructors execute practical activities on the laboratory setting. Covers the main sources of natural bioactive substances Contains practice questions and laboratory exercises at the end of every chapter to test learning and retention Describes how pharmacokinetics and pharmacodynamics play a crucial role in discerning the relationships of active metabolites to bioavailability and function at active sites Includes a dedicated chapter on the effect of plant metabolites on SARS-CoV-2

Metabolomics and Its Impact on Health and Diseases

Metabolomics and Its Impact on Health and Diseases PDF

Author: Veronica Ghini

Publisher: Springer Nature

Published: 2023-03-03

Total Pages: 384

ISBN-13: 3031268598

DOWNLOAD EBOOK →

This volume of the Handbook of Experimental Pharmacology, which celebrated its 100th anniversary in 2019, addresses the rapidly growing and evolving field of metabolomics. It has been compiled and designed to broaden and enrich your understanding as well as simplify a complicated picture of the diverse field of metabolomics. This is accomplished by chapters from experts in the field on basic principles as well as reviews and updates of analytical techniques. The variety and different perspectives of the NMR approaches are described in the chapters By David Wishart, Daniel Raftery and Ryan McKay, while mass spectrometry advances are covered by Charles R. Evans and Stefan Kempa. This book also reflects the state of the art in the application of metabolomics to cell biology (Marta Cascante and Ulrich Guenther) and chapters that share insights into the application of metabolomics in various diseases (Paola Turano and Claudio Luchinat, Rachel S. Kelly and Jessica Lasky-Su, Paige Lacy, and Angela Rogers. Relationships of metabolomics with drugs are highlighted by Robert Verpoorte (natural products drug discovery), by Oscar Millet and by Turano and Luchinat (perspectives in precision medicine) and by Daniel L. Hertz (drug-induced peripheral neuropathy). From the above list of diverse topics, we believe this book has interdisciplinary appeal and scholars with an interest in the role of metabolomics in achieving precision medicine will find it of particular or special interest.

Basic One- and Two-Dimensional NMR Spectroscopy

Basic One- and Two-Dimensional NMR Spectroscopy PDF

Author: Horst Friebolin

Publisher: John Wiley & Sons

Published: 2010-12-28

Total Pages: 452

ISBN-13: 3527327827

DOWNLOAD EBOOK →

This is the fifth edition of the highly successful, classic textbook for bachelor and master courses, with over 20 % new material and the contents completely revised and updated. Using a minimum of mathematics, it explains the underlying theory of this most important spectroscopic technique in a thorough, yet readily understandable way, covering instrumentation and interpretation of the spectra. It presents all students need to know about 1D, 2D-NMR, solid state and dynamic NMR spectroscopy, as well as NMR imaging, all illustrated by examples for maximum clarity. All the sections include sub-chapters that focus on applications taken from organic, macromolecular, polymer and biochemistry. A must for students and lecturers in chemistry, biochemistry, pharmacy, and life sciences, as well as for spectroscopists.

NMR Spectroscopy

NMR Spectroscopy PDF

Author: Harald Günther

Publisher: John Wiley & Sons

Published: 2013-12-13

Total Pages: 842

ISBN-13: 3527674772

DOWNLOAD EBOOK →

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance PDF

Author: Daniel Canet

Publisher: Wiley

Published: 1996-07-10

Total Pages: 270

ISBN-13: 9780471961451

DOWNLOAD EBOOK →

Emphasizes the physical and mathematical features of liquid state NMR spectroscopy which underpin the numerous important applications of the technique. Details of some of these applications, such as structural determination from small organic molecules to large biomolecules, the study of molecular motions and NMR imaging then follow. Detailed examples and figures throughout the text enable the student to grasp conceptually challenging ideas, while the most advanced mathematical and quantum concepts are presented so that they can be skipped on a first reading without impeding a global understanding of the key concepts.

Magnetic Resonance Imaging

Magnetic Resonance Imaging PDF

Author: Walter Johannes Schempp

Publisher: Wiley-Liss

Published: 1998-09-30

Total Pages: 288

ISBN-13: 9780471167365

DOWNLOAD EBOOK →

MAGNETIC RESONANCE IMAGING Mathematical Foundations and Applications By Walter J. Schempp As magnetic resonance imaging (MRI) continues to transform medical diagnostics and the study of the brain, the necessity for a more precise description of this important clinical tool is increasingly evident. A mathematical understanding of MRI and the related imaging modalities of functional MRI and NMR spectroscopy can greatly improve many scientific and medical endeavors, from the quality of scans in the tomographic slices and their semantic interpretations to minimally invasive neurosurgery and research in cognitive neuroscience. Magnetic Resonance Imaging advances a coherent mathematical theory of MRI and presents for the first time a real-world application of non-commutative Fourier analysis. Emphasizing the interdisciplinary nature of clinical MRI, this book offers an intriguing look at the geometric principles underlying the quantum phenomena of biomedical research. Author Walter J. Schempp, widely respected among mathematicians and neuro-network scientists alike, includes in this lucid, readable text: * The historical and phenomenological aspects of NMR spectroscopy and clinical MRI * A mathematical approach to the structure-function problem in clinical MRI * Detailed descriptions of applications to medical diagnostics * Photographs illustrating the superior contrast and spatial resolution achieved by MRI * An extensive list of references. Magnetic Resonance Imaging introduces clinical and mathematical concepts gradually and deliberately, making the complex procedure of MRI accessible to professionals in all areas of neuroscience and neurology, as well as those in mathematics, engineering, radiology, and physics.

The Multinuclear Approach to NMR Spectroscopy

The Multinuclear Approach to NMR Spectroscopy PDF

Author: J.B. Lambert

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 552

ISBN-13: 9400971303

DOWNLOAD EBOOK →

The field of nuclear magnetic resonance has experienced a number of spectacular developments during the last decade. Fourier transform methodology revolutionized signal acquisition capabilities. Superconducting magnets enhanced sensitivity and produced considerable improvement in spectral dispersion. In areas of new applicat ions, the life sciences particularly bene fited from these developments and probably saw the largest increase in usage. NMR imaging promises to offer a noninvasive alternative to X rays. High resolution is now achievable with solids, through magic angle spinning and cross polarization, so that the powers of NMR are applicable to previously intractable materials such as polymers, coal, and other geochemicals. The ease of obtaining relaxation times brought an important fourth variable, after the chemical shift, the coupling constant, and the rate constant, to the examination of structural and kinetic problems i~ all fields. Software development, particularly in the area of pulse sequences, created a host of useful tech niques, including difference decoupling and difference nuclear Overhauser effect spectra, multidimensional displays, signal enhancement (INEPT), coupling constant analysis for connectivity (INADEQUATE), and observation of specific structural classes such as only quaternary carbons. Finally, hardware development gave us access to the entire Periodic Table, to the particular advan tage of the inorganic and organometallic chemist. At the NATO Advanced Study Institute at Stirling, Scotland, the participants endeavored to examine all these advances, except imaging, from a multidisciplinary point of view.

The Multinuclear Approach to NMR Spectroscopy

The Multinuclear Approach to NMR Spectroscopy PDF

Author: J.B. Lambert

Publisher: Springer

Published: 1983-05-31

Total Pages: 548

ISBN-13: 9789027715821

DOWNLOAD EBOOK →

The field of nuclear magnetic resonance has experienced a number of spectacular developments during the last decade. Fourier transform methodology revolutionized signal acquisition capabilities. Superconducting magnets enhanced sensitivity and produced considerable improvement in spectral dispersion. In areas of new applicat ions, the life sciences particularly bene fited from these developments and probably saw the largest increase in usage. NMR imaging promises to offer a noninvasive alternative to X rays. High resolution is now achievable with solids, through magic angle spinning and cross polarization, so that the powers of NMR are applicable to previously intractable materials such as polymers, coal, and other geochemicals. The ease of obtaining relaxation times brought an important fourth variable, after the chemical shift, the coupling constant, and the rate constant, to the examination of structural and kinetic problems i~ all fields. Software development, particularly in the area of pulse sequences, created a host of useful tech niques, including difference decoupling and difference nuclear Overhauser effect spectra, multidimensional displays, signal enhancement (INEPT), coupling constant analysis for connectivity (INADEQUATE), and observation of specific structural classes such as only quaternary carbons. Finally, hardware development gave us access to the entire Periodic Table, to the particular advan tage of the inorganic and organometallic chemist. At the NATO Advanced Study Institute at Stirling, Scotland, the participants endeavored to examine all these advances, except imaging, from a multidisciplinary point of view.