Entropy Generation Minimization

Entropy Generation Minimization PDF

Author: Adrian Bejan

Publisher: CRC Press

Published: 2013-10-29

Total Pages: 389

ISBN-13: 1482239175

DOWNLOAD EBOOK →

This book presents the diverse and rapidly expanding field of Entropy Generation Minimization (EGM), the method of thermodynamic optimization of real devices. The underlying principles of the EGM method - also referred to as "thermodynamic optimization," "thermodynamic design," and "finite time thermodynamics" - are thoroughly discussed, and the me

Thermodynamic Optimization of Complex Energy Systems

Thermodynamic Optimization of Complex Energy Systems PDF

Author: Adrian Bejan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 472

ISBN-13: 9401146853

DOWNLOAD EBOOK →

A comprehensive assessment of the methodologies of thermodynamic optimization, exergy analysis and thermoeconomics, and their application to the design of efficient and environmentally sound energy systems. The chapters are organized in a sequence that begins with pure thermodynamics and progresses towards the blending of thermodynamics with other disciplines, such as heat transfer and cost accounting. Three methods of analysis stand out: entropy generation minimization, exergy (or availability) analysis, and thermoeconomics. The book reviews current directions in a field that is both extremely important and intellectually alive. Additionally, new directions for research on thermodynamics and optimization are revealed.

Entropy Based Design and Analysis of Fluids Engineering Systems

Entropy Based Design and Analysis of Fluids Engineering Systems PDF

Author: Greg F. Naterer

Publisher: CRC Press

Published: 2008-02-27

Total Pages: 346

ISBN-13: 1420006916

DOWNLOAD EBOOK →

From engineering fluid mechanics to power systems, information coding theory and other fields, entropy is key to maximizing performance in engineering systems. It serves a vital role in achieving the upper limits of efficiency of industrial processes and quality of manufactured products. Entropy based design (EBD) can shed new light on various flow

Thermal Design and Optimization

Thermal Design and Optimization PDF

Author: Adrian Bejan

Publisher: John Wiley & Sons

Published: 1995-12-12

Total Pages: 562

ISBN-13: 9780471584674

DOWNLOAD EBOOK →

A comprehensive and rigorous introduction to thermal system designfrom a contemporary perspective Thermal Design and Optimization offers readers a lucid introductionto the latest methodologies for the design of thermal systems andemphasizes engineering economics, system simulation, andoptimization methods. The methods of exergy analysis, entropygeneration minimization, and thermoeconomics are incorporated in anevolutionary manner. This book is one of the few sources available that addresses therecommendations of the Accreditation Board for Engineering andTechnology for new courses in design engineering. Intended forclassroom use as well as self-study, the text provides a review offundamental concepts, extensive reference lists, end-of-chapterproblem sets, helpful appendices, and a comprehensive case studythat is followed throughout the text. Contents include: * Introduction to Thermal System Design * Thermodynamics, Modeling, and Design Analysis * Exergy Analysis * Heat Transfer, Modeling, and Design Analysis * Applications with Heat and Fluid Flow * Applications with Thermodynamics and Heat and Fluid Flow * Economic Analysis * Thermoeconomic Analysis and Evaluation * Thermoeconomic Optimization Thermal Design and Optimization offers engineering students,practicing engineers, and technical managers a comprehensive andrigorous introduction to thermal system design and optimizationfrom a distinctly contemporary perspective. Unlike traditionalbooks that are largely oriented toward design analysis andcomponents, this forward-thinking book aligns itself with anincreasing number of active designers who believe that moreeffective, system-oriented design methods are needed. Thermal Design and Optimization offers a lucid presentation ofthermodynamics, heat transfer, and fluid mechanics as they areapplied to the design of thermal systems. This book broadens thescope of engineering design by placing a strong emphasis onengineering economics, system simulation, and optimizationtechniques. Opening with a concise review of fundamentals, itdevelops design methods within a framework of industrialapplications that gradually increase in complexity. Theseapplications include, among others, power generation by large andsmall systems, and cryogenic systems for the manufacturing,chemical, and food processing industries. This unique book draws on the best contemporary thinking aboutdesign and design methodology, including discussions of concurrentdesign and quality function deployment. Recent developments basedon the second law of thermodynamics are also included, especiallythe use of exergy analysis, entropy generation minimization, andthermoeconomics. To demonstrate the application of important designprinciples introduced, a single case study involving the design ofa cogeneration system is followed throughout the book. In addition, Thermal Design and Optimization is one of the best newsources available for meeting the recommendations of theAccreditation Board for Engineering and Technology for more designemphasis in engineering curricula. Supported by extensive reference lists, end-of-chapter problemsets, and helpful appendices, this is a superb text for both theclassroom and self-study, and for use in industrial design,development, and research. A detailed solutions manual is availablefrom the publisher.

Advanced Engineering Thermodynamics

Advanced Engineering Thermodynamics PDF

Author: Adrian Bejan

Publisher: John Wiley & Sons

Published: 2016-09-19

Total Pages: 800

ISBN-13: 1119052092

DOWNLOAD EBOOK →

An advanced, practical approach to the first and second laws of thermodynamics Advanced Engineering Thermodynamics bridges the gap between engineering applications and the first and second laws of thermodynamics. Going beyond the basic coverage offered by most textbooks, this authoritative treatment delves into the advanced topics of energy and work as they relate to various engineering fields. This practical approach describes real-world applications of thermodynamics concepts, including solar energy, refrigeration, air conditioning, thermofluid design, chemical design, constructal design, and more. This new fourth edition has been updated and expanded to include current developments in energy storage, distributed energy systems, entropy minimization, and industrial applications, linking new technologies in sustainability to fundamental thermodynamics concepts. Worked problems have been added to help students follow the thought processes behind various applications, and additional homework problems give them the opportunity to gauge their knowledge. The growing demand for sustainability and energy efficiency has shined a spotlight on the real-world applications of thermodynamics. This book helps future engineers make the fundamental connections, and develop a clear understanding of this complex subject. Delve deeper into the engineering applications of thermodynamics Work problems directly applicable to engineering fields Integrate thermodynamics concepts into sustainability design and policy Understand the thermodynamics of emerging energy technologies Condensed introductory chapters allow students to quickly review the fundamentals before diving right into practical applications. Designed expressly for engineering students, this book offers a clear, targeted treatment of thermodynamics topics with detailed discussion and authoritative guidance toward even the most complex concepts. Advanced Engineering Thermodynamics is the definitive modern treatment of energy and work for today's newest engineers.

New Trends in Statistical Physics

New Trends in Statistical Physics PDF

Author: Alfredo Mac¡as

Publisher: World Scientific

Published: 2010

Total Pages: 373

ISBN-13: 981430753X

DOWNLOAD EBOOK →

Prof Leopoldo Garcia-Colin will become 80 years old in 2010, therefore we are interested in the publication of a Festschrift (book) to honor him. Prof Garcia-Colin has worked in many different fields of statistical physics, and has applied it to biological physics, solid state physics, relativity and cosmology. We are planning a 500 pages book with original and peer-reviewed articles from his friends and former students. We may buy about 100 copies of it.

Advances in the Modelling of Thermodynamic Systems

Advances in the Modelling of Thermodynamic Systems PDF

Author: Essefi, Elhoucine

Publisher: IGI Global

Published: 2022-03-25

Total Pages: 309

ISBN-13: 1799888037

DOWNLOAD EBOOK →

Thermodynamics is a common field of study involving many different specialties including physics, chemistry, geology, and cosmology. Thermodynamics is incredibly useful for manmade industrial processes related to material studies, renewable energy, and more. It is essential for professionals to stay current with the developments in thermodynamic systems, as thermodynamics proves vital for understanding natural macroprocesses related to geology, areology, and cosmology. Advances in the Modelling of Thermodynamic Systems discusses the recent advances in modeling of thermodynamic systems as well as the state-of-the-art manmade industrial processes and natural processes taking place on Earth and beyond. It reveals an interdisciplinary vision of thermodynamics from the minuscule to the immense. Covering topics such as entropy generation, linear modeling, and statistical analysis, this premier reference source is an essential resource for engineers, chemists, physicists, mechanics, geologists, cosmologists, students and educators of higher education, libraries, researchers, and academicians.

Finite-Time Thermodynamics

Finite-Time Thermodynamics PDF

Author: Stephen Berry

Publisher: Mdpi AG

Published: 2022-09-19

Total Pages: 0

ISBN-13: 9783036549491

DOWNLOAD EBOOK →

The theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is "the cost of haste". Intuitively, it is quite obvious that you drive your car differently if you want to reach your destination as quickly as possible as opposed to the case when you are running out of gas. Finite-time thermodynamics quantifies such opposing requirements and may provide the optimal control to achieve the best compromise. The theory was initially developed for heat engines (steam, Otto, Stirling, a.o.) and for refrigerators, but it has by now evolved into essentially all areas of dynamic systems from the most abstract ones to the most practical ones. The present collection shows some fascinating current examples.

Theoretical, Computational, and Experimental Solutions to Thermo-Fluid Systems

Theoretical, Computational, and Experimental Solutions to Thermo-Fluid Systems PDF

Author: Muthukumar Palanisamy

Publisher: Springer Nature

Published: 2021-03-09

Total Pages: 505

ISBN-13: 9813341653

DOWNLOAD EBOOK →

This book presents select proceedings of the International Conference on Innovations in Thermo-Fluid Engineering and Sciences (ICITFES 2020). It covers topics in theoretical and experimental fluid dynamics, numerical methods in heat transfer and fluid mechanics, different modes of heat transfer, multiphase flow, fluid machinery, fluid power, refrigeration and air conditioning, and cryogenics. The book will be helpful to the researchers, scientists, and professionals working in the field of fluid mechanics and machinery, and thermal engineering.

A Critical Perspective of Entropy Generation Minimization in Thermal Analyses and Optimizations

A Critical Perspective of Entropy Generation Minimization in Thermal Analyses and Optimizations PDF

Author: XueTao Cheng

Publisher: Cambridge Scholars Publishing

Published: 2018-10-29

Total Pages: 163

ISBN-13: 1527520536

DOWNLOAD EBOOK →

Thermal analyses and optimizations are very ubiquitous and important in academic research and engineering applications. In this field, the entropy generation minimization has been widely used and found to be effective in many cases. Sometimes, it was even used without checking the applicability, and seemed to be a unified theory that could solve all thermal problems. Is this really the case? This book answers this question through detailed theoretical derivations and different numerical examples in heat transfer and heat-work conversion. It shows clearly that the theory has limitations and a definite application scope, beyond which it may provide unreasonable or incorrect results. Therefore, the entropy generation minimization is far from perfect. This book will be of interest to students, researchers and engineers in thermal science and engineering, as it will help the reader to apply the entropy generation minimization correctly.