Entropy Application for Forecasting

Entropy Application for Forecasting PDF

Author: Ana Jesus Lopez-Menendez

Publisher: MDPI

Published: 2020-12-29

Total Pages: 200

ISBN-13: 3039364871

DOWNLOAD EBOOK →

This book shows the potential of entropy and information theory in forecasting, including both theoretical developments and empirical applications. The contents cover a great diversity of topics, such as the aggregation and combination of individual forecasts, the comparison of forecasting performance, and the debate concerning the tradeoff between complexity and accuracy. Analyses of forecasting uncertainty, robustness, and inconsistency are also included, as are proposals for new forecasting approaches. The proposed methods encompass a variety of time series techniques (e.g., ARIMA, VAR, state space models) as well as econometric methods and machine learning algorithms. The empirical contents include both simulated experiments and real-world applications focusing on GDP, M4-Competition series, confidence and industrial trend surveys, and stock exchange composite indices, among others. In summary, this collection provides an engaging insight into entropy applications for forecasting, offering an interesting overview of the current situation and suggesting possibilities for further research in this field.

Entropy Application for Forecasting

Entropy Application for Forecasting PDF

Author: Ana Jesus Lopez-Menendez

Publisher:

Published: 2020

Total Pages: 200

ISBN-13: 9783039364886

DOWNLOAD EBOOK →

This book shows the potential of entropy and information theory in forecasting, including both theoretical developments and empirical applications. The contents cover a great diversity of topics, such as the aggregation and combination of individual forecasts, the comparison of forecasting performance, and the debate concerning the tradeoff between complexity and accuracy. Analyses of forecasting uncertainty, robustness, and inconsistency are also included, as are proposals for new forecasting approaches. The proposed methods encompass a variety of time series techniques (e.g., ARIMA, VAR, state space models) as well as econometric methods and machine learning algorithms. The empirical contents include both simulated experiments and real-world applications focusing on GDP, M4-Competition series, confidence and industrial trend surveys, and stock exchange composite indices, among others. In summary, this collection provides an engaging insight into entropy applications for forecasting, offering an interesting overview of the current situation and suggesting possibilities for further research in this field.

Forecasting with Maximum Entropy Hb

Forecasting with Maximum Entropy Hb PDF

Author: FORT

Publisher: IOP ebooks

Published: 2022-11-30

Total Pages: 0

ISBN-13: 9780750339292

DOWNLOAD EBOOK →

This book aims at providing a unifying framework, based on Information Entropy and its maximization, to connect the phenomenology of evolutionary biology, community ecology, financial economics, and statistical physics. This more comprehensive view, besides providing further insight into problems, enables problem-solving strategies by applying proven methods in one discipline to formally similar problems in other areas. The book also proposes a forecasting method for important practical problems in these disciplines and is directed to researchers, students and practitioners working on modelling the dynamics of complex systems. The common thread is how the flux of information both controls and serves to predict the dynamics of complex systems. It is shown how maximizing the Shannon information entropy allows one to infer a central object controlling the dynamics of complex systems, such as ecosystems or markets. The resulting models, which are known as pairwise maximum-entropy models, can be used to infer interactions from data in a wide variety of systems. Here, two examples are analysed in detail. The first is an application to conservation ecology, namely the issue of providing early warning indicators of population crashes of species of trees in tropical forests. The second is about forecasting the market values of firms through evolutionary economics. An interesting lesson is that PME modelling often produces accurate predictions despite not incorporating explicit interaction mechanisms. Key features Written to be suitable for a broad spectrum of readers and assumes little mathematical specialism. Includes pedagogical features: Worked examples, case studies and summaries. The interdisciplinary approach builds bridges between disciplines. Oriented to solve practical problems. Includes a combination of analytical derivations and numerical simulations with experiments

A Forecasting Model Based on High-Order Fluctuation Trends and Information Entropy

A Forecasting Model Based on High-Order Fluctuation Trends and Information Entropy PDF

Author: Hongjun Guan

Publisher: Infinite Study

Published:

Total Pages: 15

ISBN-13:

DOWNLOAD EBOOK →

Most existing high-order prediction models abstract logical rules that are based on historical discrete states without considering historical inconsistency and fluctuation trends. In fact, these two characteristics are important for describing historical fluctuations. This paper proposes a model based on logical rules abstracted from historical dynamic fluctuation trends and the corresponding inconsistencies. In the logical rule training stage, the dynamic trend states of up and down are mapped to the two dimensions of truth-membership and false-membership of neutrosophic sets, respectively. Meanwhile, information entropy is employed to quantify the inconsistency of a period of history, which is mapped to the indeterminercy-membership of the neutrosophic sets. In the forecasting stage, the similarities among the neutrosophic sets are employed to locate the most similar left side of the logical relationship. Therefore, the two characteristics of the fluctuation trends and inconsistency assist with the future forecasting. The proposed model extends existing high-order fuzzy logical relationships (FLRs) to neutrosophic logical relationships (NLRs). When compared with traditional discrete high-order FLRs, the proposed NLRs have higher generality and handle the problem caused by the lack of rules. The proposed method is then implemented to forecast Taiwan Stock Exchange CapitalizationWeighted Stock Index and Heng Seng Index. The experimental conclusions indicate that the model has stable prediction ability for different data sets. Simultaneously, comparing the prediction error with other approaches also proves that the model has outstanding prediction accuracy and universality.

Entropy Applications in Environmental and Water Engineering

Entropy Applications in Environmental and Water Engineering PDF

Author: Huijuan Cui

Publisher: MDPI

Published: 2019-03-07

Total Pages: 512

ISBN-13: 3038972223

DOWNLOAD EBOOK →

Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Rényi, Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.

A Neutrosophic Forecasting Model for Time Series Based on First-Order State and Information Entropy of High-Order Fluctuation

A Neutrosophic Forecasting Model for Time Series Based on First-Order State and Information Entropy of High-Order Fluctuation PDF

Author: Hongjun Guan

Publisher: Infinite Study

Published:

Total Pages: 18

ISBN-13:

DOWNLOAD EBOOK →

In time series forecasting, information presentation directly affects prediction efficiency. Most existing time series forecasting models follow logical rules according to the relationships between neighboring states, without considering the inconsistency of fluctuations for a related period. In this paper, we propose a new perspective to study the problem of prediction, in which inconsistency is quantified and regarded as a key characteristic of prediction rules. First, a time series is converted to a fluctuation time series by comparing each of the current data with corresponding previous data.

The Maximum Entropy Method

The Maximum Entropy Method PDF

Author: Nailong Wu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 336

ISBN-13: 3642606296

DOWNLOAD EBOOK →

Forty years ago, in 1957, the Principle of Maximum Entropy was first intro duced by Jaynes into the field of statistical mechanics. Since that seminal publication, this principle has been adopted in many areas of science and technology beyond its initial application. It is now found in spectral analysis, image restoration and a number of branches ofmathematics and physics, and has become better known as the Maximum Entropy Method (MEM). Today MEM is a powerful means to deal with ill-posed problems, and much research work is devoted to it. My own research in the area ofMEM started in 1980, when I was a grad uate student in the Department of Electrical Engineering at the University of Sydney, Australia. This research work was the basis of my Ph.D. the sis, The Maximum Entropy Method and Its Application in Radio Astronomy, completed in 1985. As well as continuing my research in MEM after graduation, I taught a course of the same name at the Graduate School, Chinese Academy of Sciences, Beijingfrom 1987to 1990. Delivering the course was theimpetus for developing a structured approach to the understanding of MEM and writing hundreds of pages of lecture notes.