Entanglement in Spin Chains

Entanglement in Spin Chains PDF

Author: Abolfazl Bayat

Publisher: Springer Nature

Published: 2022-09-26

Total Pages: 549

ISBN-13: 303103998X

DOWNLOAD EBOOK →

This book covers recent developments in the understanding, quantification, and exploitation of entanglement in spin chain models from both condensed matter and quantum information perspectives. Spin chain models are at the foundation of condensed matter physics and quantum information technologies and elucidate many fundamental phenomena such as information scrambling, quantum phase transitions, and many-body localization. Moreover, many quantum materials and emerging quantum devices are well described by spin chains. Comprising accessible, self-contained chapters written by leading researchers, this book is essential reading for graduate students and researchers in quantum materials and quantum information. The coverage is comprehensive, from the fundamental entanglement aspects of quantum criticality, non-equilibrium dynamics, classical and quantum simulation of spin chains through to their experimental realizations, and beyond into machine learning applications.

The Bethe Wavefunction

The Bethe Wavefunction PDF

Author: Michel Gaudin

Publisher: Cambridge University Press

Published: 2014-03-06

Total Pages: 341

ISBN-13: 1107783119

DOWNLOAD EBOOK →

Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers in physics. It presents a mixture of mathematics interspersed with powerful physical intuition, retaining the author's unmistakably honest tone. The book begins with the Heisenberg spin chain, starting from the coordinate Bethe Ansatz and culminating in a discussion of its thermodynamic properties. Delta-interacting bosons (the Lieb-Liniger model) are then explored, and extended to exactly solvable models associated to a reflection group. After discussing the continuum limit of spin chains, the book covers six- and eight-vertex models in extensive detail, from their lattice definition to their thermodynamics. Later chapters examine advanced topics such as multi-component delta-interacting systems, Gaudin magnets and the Toda chain.

Entanglement in Spain Chains

Entanglement in Spain Chains PDF

Author: Abolfazl Bayat

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9788303103994

DOWNLOAD EBOOK →

This book covers recent developments in the understanding, quantification, and exploitation of entanglement in spin chain models from both condensed matter and quantum information perspectives. Spin chain models are at the foundation of condensed matter physics and quantum information technologies and elucidate many fundamental phenomena such as information scrambling, quantum phase transitions, and many-body localization. Moreover, many quantum materials and emerging quantum devices are well described by spin chains. Comprising accessible, self-contained chapters written by leading researchers, this book is essential reading for graduate students and researchers in quantum materials and quantum information. The coverage is comprehensive, from the fundamental entanglement aspects of quantum criticality, non-equilibrium dynamics, classical and quantum simulation of spin chains through to their experimental realizations, and beyond into machine learning applications.

Entanglement Between Noncomplementary Parts of Many-Body Systems

Entanglement Between Noncomplementary Parts of Many-Body Systems PDF

Author: Hannu Christian Wichterich

Publisher: Springer Science & Business Media

Published: 2011-05-18

Total Pages: 121

ISBN-13: 3642193420

DOWNLOAD EBOOK →

This thesis investigates the structure and behaviour of entanglement, the purely quantum mechanical part of correlations, in many-body systems, employing both numerical and analytical techniques at the interface of condensed matter theory and quantum information theory. Entanglement can be seen as a precious resource which, for example, enables the noiseless and instant transmission of quantum information, provided the communicating parties share a sufficient "amount" of it. Furthermore, measures of entanglement of a quantum mechanical state are perceived as useful probes of collective properties of many-body systems. For instance, certain measures are capable of detecting and classifying ground-state phases and, particularly, transition (or critical) points separating such phases. Chapters 2 and 3 focus on entanglement in many-body systems and its use as a potential resource for communication protocols. They address the questions of how a substantial amount of entanglement can be established between distant subsystems, and how efficiently this entanglement could be "harvested" by way of measurements. The subsequent chapters 4 and 5 are devoted to universality of entanglement between large collections of particles undergoing a quantum phase transition, where, despite the enormous complexity of these systems, collective properties including entanglement no longer depend crucially on the microscopic details.

Physical and Mathematical Aspects of Symmetries

Physical and Mathematical Aspects of Symmetries PDF

Author: Sergio Duarte

Publisher: Springer

Published: 2018-01-09

Total Pages: 422

ISBN-13: 3319691643

DOWNLOAD EBOOK →

This proceedings records the 31st International Colloquium on Group Theoretical Methods in Physics (“Group 31”). Plenary-invited articles propose new approaches to the moduli spaces in gauge theories (V. Pestun, 2016 Weyl Prize Awardee), the phenomenology of neutrinos in non-commutative space-time, the use of Hardy spaces in quantum physics, contradictions in the use of statistical methods on complex systems, and alternative models of supersymmetry. This volume’s survey articles broaden the colloquia’s scope out into Majorana neutrino behavior, the dynamics of radiating charges, statistical pattern recognition of amino acids, and a variety of applications of gauge theory, among others. This year’s proceedings further honors Bertram Kostant (2016 Wigner Medalist), as well as S.T. Ali and L. Boyle, for their life-long contributions to the math and physics communities. The aim of the ICGTMP is to provide a forum for physicists, mathematicians, and scientists of related disciplines who develop or apply methods in group theory to share their research. The 31st ICGTMP was held in Rio de Janeiro, Brazil, from June 19th to June 25th, 2016. This was the first time that a colloquium of the prestigious and traditional ICGTMP series (which started in 1972 in Marseille, France) took place in South America. (The history of the colloquia can be found at http://icgtmp.blogs.uva.es/)

An Introduction to Quantum Spin Systems

An Introduction to Quantum Spin Systems PDF

Author: John B. Parkinson

Publisher: Springer Science & Business Media

Published: 2010-09-20

Total Pages: 159

ISBN-13: 3642132898

DOWNLOAD EBOOK →

The topic of lattice quantum spin systems is a fascinating and by now well established branch of theoretical physics. Based on a set of lectures, this book has a level of detail missing from others, and guides the reader through the fundamentals of the field.

Tensor Network Contractions

Tensor Network Contractions PDF

Author: Shi-Ju Ran

Publisher: Springer Nature

Published: 2020-01-27

Total Pages: 160

ISBN-13: 3030344894

DOWNLOAD EBOOK →

Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.

Foundations of Quantum Mechanics in the Light of New Technology

Foundations of Quantum Mechanics in the Light of New Technology PDF

Author: Sachio Ishioka

Publisher: World Scientific

Published: 2009

Total Pages: 376

ISBN-13: 9814282138

DOWNLOAD EBOOK →

This book is the proceedings of the 9th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology (ISQMOCoTOKYO''08) which aims to link the recent advances in technology with fundamental problems in quantum mechanics. It also discusses fundamental problems and issues in quantum physics and places a special emphasis on OC Quantum Coherence and DecoherenceOCO. The proceedings included a special lecture by Prof C N Yang, OC Pseudopotential Method in Cold Atom ResearchOCO, and 75 refereed papers covering the wide range of quantum physics: cold atoms and molecules; spin-Hall effect and anomalous Hall effect; magnetic domain wall dynamics and spin-related phenomena; Dirac fermions in condensed matter; quantum dot systems; entanglement and quantum information processing, qubit manipulations; mechanical properties of confined geometry; precise measurements; novel properties of nano-systems; and fundamental problems in quantum physics. The book will not only serve as a good reference for experts on quantum coherence and decoherence, but also as an introduction for newcomers to this field."