Enriched Numerical Techniques

Enriched Numerical Techniques PDF

Author: Azher Jameel

Publisher: Elsevier

Published: 2024-05-09

Total Pages: 481

ISBN-13: 0443153612

DOWNLOAD EBOOK →

Enriched Numerical Techniques: Implementation and Applications explores recent advances in enriched numerical techniques, including the extended finite element method, meshfree methods, extended isogeometric analysis and coupled numerical techniques. Techniques for implementation and programming issues are discussed, with other sections discussing applications for enriched numerical techniques in solving a range of engineering problems. The level set methodologies for complex shaped irregularities is presented, as are enriched numerical methodologies for various complex and advanced problems such as Nonlinear Structural Analysis, Fracture and Fatigue in Structures, Elasto-Plastic Crack Growth, Large Deformation Analysis, Frictional Contact Problems, Thermo-Mechanical Problems, Fluid Flow Investigations, Composite Materials and Bio-mechanics. Features explanations on how to use enriched numerical techniques to model problems in bio-mechanics and fluid flow Includes worked examples that are used to explain methods throughout Provides practical advice on how to tackle programming issues

Extended Finite Element Method

Extended Finite Element Method PDF

Author: Amir R. Khoei

Publisher: John Wiley & Sons

Published: 2015-02-23

Total Pages: 600

ISBN-13: 1118457684

DOWNLOAD EBOOK →

Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples

Numerical Analysis of Wavelet Methods

Numerical Analysis of Wavelet Methods PDF

Author: A. Cohen

Publisher: Elsevier

Published: 2003-04-29

Total Pages: 357

ISBN-13: 0080537855

DOWNLOAD EBOOK →

Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coefficients. The theoretical pillar that underlies such properties involves approximation theory and function spaces, and plays a pivotal role in the analysis of wavelet-based numerical methods. This book offers a self-contained treatment of wavelets, which includes this theoretical pillar and it applications to the numerical treatment of partial differential equations. Its key features are: 1. Self-contained introduction to wavelet bases and related numerical algorithms, from the simplest examples to the most numerically useful general constructions. 2. Full treatment of the theoretical foundations that are crucial for the analysis of wavelets and other related multiscale methods : function spaces, linear and nonlinear approximation, interpolation theory. 3. Applications of these concepts to the numerical treatment of partial differential equations : multilevel preconditioning, sparse approximations of differential and integral operators, adaptive discretization strategies.

Fundamentals of Enriched Finite Element Methods

Fundamentals of Enriched Finite Element Methods PDF

Author: Alejandro M. Aragón

Publisher: Elsevier

Published: 2023-11-09

Total Pages: 312

ISBN-13: 0323855164

DOWNLOAD EBOOK →

Fundamentals of Enriched Finite Element Methods provides an overview of the different enriched finite element methods, detailed instruction on their use, and also looks at their real-world applications, recommending in what situations they’re best implemented. It starts with a concise background on the theory required to understand the underlying functioning principles behind enriched finite element methods before outlining detailed instruction on implementation of the techniques in standard displacement-based finite element codes. The strengths and weaknesses of each are discussed, as are computer implementation details, including a standalone generalized finite element package, written in Python. The applications of the methods to a range of scenarios, including multi-phase, fracture, multiscale, and immersed boundary (fictitious domain) problems are covered, and readers can find ready-to-use code, simulation videos, and other useful resources on the companion website to the book. Reviews various enriched finite element methods, providing pros, cons, and scenarios forbest use Provides step-by-step instruction on implementing these methods Covers the theory of general and enriched finite element methods

Numerical Methods in Contact Mechanics

Numerical Methods in Contact Mechanics PDF

Author: Vladislav A. Yastrebov

Publisher: John Wiley & Sons

Published: 2013-02-13

Total Pages: 303

ISBN-13: 1118648056

DOWNLOAD EBOOK →

Computational contact mechanics is a broad topic which brings together algorithmic, geometrical, optimization and numerical aspects for a robust, fast and accurate treatment of contact problems. This book covers all the basic ingredients of contact and computational contact mechanics: from efficient contact detection algorithms and classical optimization methods to new developments in contact kinematics and resolution schemes for both sequential and parallel computer architectures. The book is self-contained and intended for people working on the implementation and improvement of contact algorithms in a finite element software. Using a new tensor algebra, the authors introduce some original notions in contact kinematics and extend the classical formulation of contact elements. Some classical and new resolution methods for contact problems and associated ready-to-implement expressions are provided. Contents: 1. Introduction to Computational Contact. 2. Geometry in Contact Mechanics. 3. Contact Detection. 4. Formulation of Contact Problems. 5. Numerical Procedures. 6. Numerical Examples. About the Authors Vladislav A. Yastrebov is a postdoctoral-fellow in Computational Solid Mechanics at MINES ParisTech in France. His work in computational contact mechanics was recognized by the CSMA award and by the Prix Paul Caseau of the French Academy of Technology and Electricité de France.

The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method PDF

Author: Chongmin Song

Publisher: John Wiley & Sons

Published: 2018-06-19

Total Pages: 504

ISBN-13: 1119388457

DOWNLOAD EBOOK →

An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.

The Proper Generalized Decomposition for Advanced Numerical Simulations

The Proper Generalized Decomposition for Advanced Numerical Simulations PDF

Author: Francisco Chinesta

Publisher: Springer Science & Business Media

Published: 2013-10-08

Total Pages: 127

ISBN-13: 3319028650

DOWNLOAD EBOOK →

Many problems in scientific computing are intractable with classical numerical techniques. These fail, for example, in the solution of high-dimensional models due to the exponential increase of the number of degrees of freedom. Recently, the authors of this book and their collaborators have developed a novel technique, called Proper Generalized Decomposition (PGD) that has proven to be a significant step forward. The PGD builds by means of a successive enrichment strategy a numerical approximation of the unknown fields in a separated form. Although first introduced and successfully demonstrated in the context of high-dimensional problems, the PGD allows for a completely new approach for addressing more standard problems in science and engineering. Indeed, many challenging problems can be efficiently cast into a multi-dimensional framework, thus opening entirely new solution strategies in the PGD framework. For instance, the material parameters and boundary conditions appearing in a particular mathematical model can be regarded as extra-coordinates of the problem in addition to the usual coordinates such as space and time. In the PGD framework, this enriched model is solved only once to yield a parametric solution that includes all particular solutions for specific values of the parameters. The PGD has now attracted the attention of a large number of research groups worldwide. The present text is the first available book describing the PGD. It provides a very readable and practical introduction that allows the reader to quickly grasp the main features of the method. Throughout the book, the PGD is applied to problems of increasing complexity, and the methodology is illustrated by means of carefully selected numerical examples. Moreover, the reader has free access to the Matlab© software used to generate these examples.

Partition of Unity Methods

Partition of Unity Methods PDF

Author: Stéphane P. A. Bordas

Publisher: John Wiley & Sons

Published: 2023-10-19

Total Pages: 373

ISBN-13: 111853588X

DOWNLOAD EBOOK →

PARTITION OF UNITY METHODS Master the latest tool in computational mechanics with this brand-new resource from distinguished leaders in the field While it is the number one tool for computer aided design and engineering, the finite element method (FEM) has difficulties with discontinuities, singularities, and moving boundaries. Partition of unity methods addresses these challenges and is now increasingly implemented in commercially available software. Partition of Unity Methods delivers a detailed overview of its fundamentals, in particular the extended finite element method for applications in solving moving boundary problems. The distinguished academics and authors introduce the XFEM as a natural extension of the traditional finite element method (FEM), through straightforward one-dimensional examples which form the basis for the subsequent introduction of higher dimensional problems. This book allows readers to fully understand and utilize XFEM just as it becomes ever more crucial to industry practice. Partition of Unity Methods explores all essential topics on this key new technology, including: Coverage of the difficulties faced by the finite element method and the impetus behind the development of XFEM The basics of the finite element method, with discussions of finite element formulation of linear elasticity and the calculation of the force vector An introduction to the fundamentals of enrichment A revisitation of the partition of unity enrichment A description of the geometry of enrichment features, with discussions of level sets for stationary interfaces Application of XFEM to bio-film, gradient theories, and three dimensional crack propagation Perfect for researchers and postdoctoral candidates working in the field of computational mechanics, Partition of Unity Methods also has a place in the libraries of senior undergraduate and graduate students working in the field. Finite element and CFD analysts and developers in private industry will also greatly benefit from this book.

Enriched Space-time Finite Element Methods for Structural Dynamics Applications

Enriched Space-time Finite Element Methods for Structural Dynamics Applications PDF

Author: David N. Alpert

Publisher:

Published: 2013

Total Pages: 132

ISBN-13:

DOWNLOAD EBOOK →

Accurate prediction of structural responses under combined, extreme environments often involves a wide range of spatial and temporal scales. In the traditional analysis of structural response problems, time dependent problems are generally solved using a semi-discrete finite element method. These methods have difficulty simulating high frequency ranges, long time durations, and capturing sharp gradients and discontinuities. Some limitations include time step constraints or a lack of convergence. The space-time finite element method based on time-discontinuous formulation extends the discretization into the temporal domain and is able to address some of these concerns. The constraints on the time-step are relaxed and the method has had some success in accurately capturing sharp gradients and discontinuities. For applications featured by multiscale responses in both space and time, the regular space-time finite element method is unable to capture the full spectrum of the response. An enriched space-time finite element method is proposed based on a coupled space-time approximation. Enrichment is introduced into the space-time framework based on the extended finite element method (XFEM). The effects of continuous enrichment functions are explored for high frequency wave propagation. Previous works are based primarily on enrichment in time. Numerical solvers are developed and benchmarked for the space-time system on high-performance platform. The method's robustness is demonstrated by convergence studies using energy error norms. Improvements are observed in terms of the convergence properties of the enriched space-time finite element method over the traditional space-time finite element method for problems with fine scale features. As a result, enrichment may be considered an alternative to mesh refinement. The numerical instability associated with the high condition number of the enriched space-time analogous stiffness matrices is studied. The factors affecting the condition numbers are explored and a Jacobi preconditioner is applied to reduce the condition numbers. Programs to model example problems are developed using Fortran. The computational expense for these programs is reduced by using advanced programming libraries utilizing GPGPU. It is concluded that the proposed formulation is robust and accurate but the high condition number of the system can pose difficulties for its implementation.