Physics of Dielectrics for the Engineer

Physics of Dielectrics for the Engineer PDF

Author: Roland Coelho

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 188

ISBN-13: 0444601805

DOWNLOAD EBOOK →

Physics of Dielectrics for the Engineer is a systematic attempt to clarify and correlate advanced concepts underlying the physics of dielectrics. It reviews the basics of electrostatics, the different models for the polarizability of atoms and molecules, and the macroscopic permittivity. It also discusses the behavior of matter in an alternating field in relation to complex permittivity, the interactions between field and matter, dissipative effects under high electric fields, the wide-gap semiconductor model, the types of charge carriers, and the main disruptive processes. Organized into three parts encompassing 12 chapters, this volume begins with an overview of the physical concepts involved in the behavior of insulating materials subjected to high electric fields. It then explores the potential of a group of charges, and dipoles induced in an applied field. The book explains statistical theories of dipole orientation in an applied field and theories relating molecular and macroscopic quantities. The propagation of an electromagnetic wave, dipole relaxation of defects in crystal lattices, and space-charge polarization and relaxation are also discussed. The book explains the uni-dimensional polar lattice, intrinsic and impurity conduction in wide-gap semiconductors, thermal runaway, and collision breakdown. Many problems with corresponding solutions are included to assist the reader. This book will benefit electrical engineers, as well as electrical engineering students, scientists, and technicians.

Dielectric Materials for Electrical Engineering

Dielectric Materials for Electrical Engineering PDF

Author: Juan Martinez-Vega

Publisher: John Wiley & Sons

Published: 2013-03-04

Total Pages: 443

ISBN-13: 1118619781

DOWNLOAD EBOOK →

The object of this book is to provide a comprehensive reference source for the numerous scientific communities (engineers, researchers, students, etc.) in various disciplines which require detailed information in the field of dielectric materials. Part 1 focuses on physical properties, electrical ageing, and modeling - including topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and end of life (EOL) models, and dielectric experimental characterization. Part 2 examines applications of specific relevance to dielectric materials: insulating oils for transformers, electro-rheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric polymers.

Dielectrics in Electric Fields

Dielectrics in Electric Fields PDF

Author: Gorur Govinda Raju

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 756

ISBN-13: 1315350424

DOWNLOAD EBOOK →

Dielectrics in Electric Fields explores the influence of electric fields on dielectric—i.e., non-conducting or insulating—materials, examining the distinctive behaviors of these materials through well-established principles of physics and engineering. Featuring five new chapters, nearly 200 new figures, and more than 800 new citations, this fully updated and significantly expanded Second Edition: Analyzes inorganic substances with real-life applications in harsh working conditions such as outdoor, nuclear, and space environments Introduces methods for measuring dielectric properties at microwave frequencies, presenting results obtained for specific materials Discusses the application of dielectric theory in allied fields such as corrosion studies, civil engineering, and health sciences Combines in one chapter coverage of electrical breakdown in gases with breakdown in micrometric gaps Offers extensive coverage of electron energy distribution—essential knowledge required for the application of plasma sciences in medical science Delivers a detailed review of breakdown in liquids, along with an overview of electron mobility, providing a clear understanding of breakdown phenomena Explains breakdown in solid dielectrics such as single crystals, polycrystalline and amorphous states, thin films, and powders compressed to form pellets Addresses the latest advances in dielectric theory and research, including cutting-edge nanodielectric materials and their practical applications Blends early classical papers that laid the foundation for much of the dielectric theory with more recent work The author has drawn from more than 55 years of research studies and experience in the areas of high-voltage engineering, power systems, and dielectric materials and systems to supply both aspiring and practicing engineers with a comprehensive, authoritative source for up-to-date information on dielectrics in electric fields.

Dielectric Phenomena in High Voltage Engineering

Dielectric Phenomena in High Voltage Engineering PDF

Author: Frank William Peek

Publisher: Watchmaker Publishing

Published: 1915

Total Pages: 312

ISBN-13:

DOWNLOAD EBOOK →

The properties of gaseous, liquid and solid insulations, and methods of utilizing these properties to the best advantage in the problems of high-voltage engineering.

Nano-CMOS Gate Dielectric Engineering

Nano-CMOS Gate Dielectric Engineering PDF

Author: Hei Wong

Publisher: CRC Press

Published: 2011-11-28

Total Pages: 251

ISBN-13: 1439849595

DOWNLOAD EBOOK →

According to Moore’s Law, not only does the number of transistors in an integrated circuit double every two years, but transistor size also decreases at a predictable rate. At the rate we are going, the downsizing of CMOS transistors will reach the deca-nanometer scale by 2020. Accordingly, the gate dielectric thickness will be shrunk to less than half-nanometer oxide equivalent thickness (EOT) to maintain proper operation of the transistors, leaving high-k materials as the only viable solution for such small-scale EOT. This comprehensive, up-to-date text covering the physics, materials, devices, and fabrication processes for high-k gate dielectric materials, Nano-CMOS Gate Dielectric Engineering systematically describes how the fundamental electronic structures and other material properties of the transition metals and rare earth metals affect the electrical properties of the dielectric films, the dielectric/silicon and the dielectric/metal gate interfaces, and the resulting device properties. Specific topics include the problems and solutions encountered with high-k material thermal stability, defect density, and poor initial interface with silicon substrate. The text also addresses the essence of thin film deposition, etching, and process integration of high-k materials in an actual CMOS process. Fascinating in both content and approach, Nano-CMOS Gate Dielectric Engineering explains all of the necessary physics in a highly readable manner and supplements this with numerous intuitive illustrations and tables. Covering almost every aspect of high-k gate dielectric engineering for nano-CMOS technology, this is a perfect reference book for graduate students needing a better understanding of developing technology as well as researchers and engineers needing to get ahead in microelectronic engineering and materials science.

Dielectrics in Electric Fields

Dielectrics in Electric Fields PDF

Author: Gorur G. Raju

Publisher: CRC Press

Published: 2003-01-22

Total Pages: 597

ISBN-13: 0824747372

DOWNLOAD EBOOK →

Examines the influences of electric fields on dielectric materials and explores their distinctive behavior through well established principles of physics and engineering and recent literature on dielectrics. Facilitates understanding of the space charge phenomena in the nonuniform fields. Contains more than 800 display equations.

Polymer Dielectrics

Polymer Dielectrics PDF

Author: Boxue Du

Publisher: BoD – Books on Demand

Published: 2017-05-11

Total Pages: 152

ISBN-13: 9535131478

DOWNLOAD EBOOK →

The book gives the reader an overview on electrical properties and applications such as converter transformer, transistor, and energy storage. Besides, this book also presents some recent researches on typical polymer material such as silicon rubber and LDPE, which may provide some clues of advanced polymer properties for both engineers and researches. The author has been a professor at the Department of Electrical Engineering, School of Electrical Engineering and Automation, Tianjin University, China, since 2002. He has been active in polymer insulation research since the 1990s. He is a member of IEEJ, senior member of CSEE, member at several WG in CIGRE, and associate editor of the IEEE Transactions on Dielectrics and Electrical Insulation.