Neuromorphic Engineering

Neuromorphic Engineering PDF

Author: Fouad Sabry

Publisher: One Billion Knowledgeable

Published: 2022-07-10

Total Pages: 471

ISBN-13:

DOWNLOAD EBOOK →

What Is Neuromorphic Engineering Neuromorphic computing and neuromorphic engineering are both terms that refer to the same thing: the use of very-large-scale integration (VLSI) systems that incorporate electrical analog circuits to simulate neuro-biological structures that are found in the nervous system. Any electronic device that does calculations with the help of artificial neurons that are implemented as physical structures is referred to as a neuromorphic computer or chip. Recently, the word "neuromorphic" has been used to refer to analog, digital, mixed-mode analog/digital VLSI, and software systems that embody models of brain systems. This use of the term has become more common. To actualize the implementation of neuromorphic computing on the hardware level, oxide-based memristors, spintronic memory, threshold switches, and transistors are some of the components that may be used. Training software-based neuromorphic systems of spiking neural networks can be accomplished through the use of error backpropagation, for instance through the utilization of Python-based frameworks like snnTorch, or through the utilization of canonical learning rules from the biological learning literature, for instance through the utilization of BindsNet. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Neuromorphic engineering Chapter 2: Artificial neuron Chapter 3: Bio-inspired computing Chapter 4: Steve Furber Chapter 5: Carver Mead Chapter 6: Recurrent neural network Chapter 7: Neural network Chapter 8: Wetware computer Chapter 9: Computational neurogenetic modeling Chapter 10: Spiking neural network Chapter 11: Neurorobotics Chapter 12: Misha Mahowald Chapter 13: Memristor Chapter 14: Physical neural network Chapter 15: NOMFET Chapter 16: Massimiliano Versace Chapter 17: Kwabena Boahen Chapter 18: SpiNNaker Chapter 19: Cognitive computer Chapter 20: Glossary of artificial intelligence Chapter 21: Hai Li (II) Answering the public top questions about neuromorphic engineering. (III) Real world examples for the usage of neuromorphic engineering in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of neuromorphic engineering' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of neuromorphic engineering.

Artificial Life VII

Artificial Life VII PDF

Author: Mark A. Bedau

Publisher: MIT Press

Published: 2000-08-01

Total Pages: 584

ISBN-13: 9780262522908

DOWNLOAD EBOOK →

The term "artificial life" describes research into synthetic systems that possess some of the essential properties of life. This interdisciplinary field includes biologists, computer scientists, physicists, chemists, geneticists, and others. Artificial life may be viewed as an attempt to understand high-level behavior from low-level rules—for example, how the simple interactions between ants and their environment lead to complex trail-following behavior. An understanding of such relationships in particular systems can suggest novel solutions to complex real-world problems such as disease prevention, stock-market prediction, and data mining on the Internet. Since their inception in 1987, the Artificial Life meetings have grown from small workshops to truly international conferences, reflecting the field's increasing appeal to researchers in all areas of science.

Micro-, Meso- and Macro-Dynamics of the Brain

Micro-, Meso- and Macro-Dynamics of the Brain PDF

Author: György Buzsáki

Publisher: Springer

Published: 2016-05-02

Total Pages: 181

ISBN-13: 3319288024

DOWNLOAD EBOOK →

This book brings together leading investigators who represent various aspects of brain dynamics with the goal of presenting state-of-the-art current progress and address future developments. The individual chapters cover several fascinating facets of contemporary neuroscience from elementary computation of neurons, mesoscopic network oscillations, internally generated assembly sequences in the service of cognition, large-scale neuronal interactions within and across systems, the impact of sleep on cognition, memory, motor-sensory integration, spatial navigation, large-scale computation and consciousness. Each of these topics require appropriate levels of analyses with sufficiently high temporal and spatial resolution of neuronal activity in both local and global networks, supplemented by models and theories to explain how different levels of brain dynamics interact with each other and how the failure of such interactions results in neurologic and mental disease. While such complex questions cannot be answered exhaustively by a dozen or so chapters, this volume offers a nice synthesis of current thinking and work-in-progress on micro-, meso- and macro- dynamics of the brain.

Augmentation of Brain Function: Facts, Fiction and Controversy

Augmentation of Brain Function: Facts, Fiction and Controversy PDF

Author: Mikhail Lebedev

Publisher: Frontiers Media SA

Published: 2018-09-14

Total Pages: 666

ISBN-13: 2889456145

DOWNLOAD EBOOK →

Volume I, entitled “Augmentation of Brain Functions: Brain-Machine Interfaces”, is a collection of articles on neuroprosthetic technologies that utilize brain-machine interfaces (BMIs). BMIs strive to augment the brain by linking neural activity, recorded invasively or noninvasively, to external devices, such as arm prostheses, exoskeletons that enable bipedal walking, means of communication and technologies that augment attention. In addition to many practical applications, BMIs provide useful research tools for basic science. Several articles cover challenges and controversies in this rapidly developing field, such as ways to improve information transfer rate. BMIs can be applied to the awake state of the brain and to the sleep state, as well. BMIs can augment action planning and decision making. Importantly, BMI operations evoke brain plasticity, which can have long-lasting effects. Advanced neural decoding algorithms that utilize optimal feedback controllers are key to the BMI performance. BMI approach can be combined with the other augmentation methods; such systems are called hybrid BMIs. Overall, it appears that BMI will lead to many powerful and practical brain-augmenting technologies in the future.

Frontiers of Quality Electronic Design (QED)

Frontiers of Quality Electronic Design (QED) PDF

Author: Ali Iranmanesh

Publisher: Springer Nature

Published: 2023-01-11

Total Pages: 690

ISBN-13: 3031163443

DOWNLOAD EBOOK →

Quality Electronic Design (QED)’s landscape spans a vast region where territories of many participating disciplines and technologies overlap. This book explores the latest trends in several key topics related to quality electronic design, with emphasis on Hardware Security, Cybersecurity, Machine Learning, and application of Artificial Intelligence (AI). The book includes topics in nonvolatile memories (NVM), Internet of Things (IoT), FPGA, and Neural Networks.

Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex Behavior: From Biology to Technology

Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex Behavior: From Biology to Technology PDF

Author: Poramate Manoonpong

Publisher: Frontiers Media SA

Published: 2018-10-11

Total Pages: 278

ISBN-13: 2889456056

DOWNLOAD EBOOK →

How can neural and morphological computations be effectively combined and realized in embodied closed-loop systems (e.g., robots) such that they can become more like living creatures in their level of performance? Understanding this will lead to new technologies and a variety of applications. To tackle this research question, here, we bring together experts from different fields (including Biology, Computational Neuroscience, Robotics, and Artificial Intelligence) to share their recent findings and ideas and to update our research community. This eBook collects 17 cutting edge research articles, covering neural and morphological computations as well as the transfer of results to real world applications, like prosthesis and orthosis control and neuromorphic hardware implementation.

Reservoir Computing

Reservoir Computing PDF

Author: Kohei Nakajima

Publisher: Springer Nature

Published: 2021-08-05

Total Pages: 463

ISBN-13: 9811316872

DOWNLOAD EBOOK →

This book is the first comprehensive book about reservoir computing (RC). RC is a powerful and broadly applicable computational framework based on recurrent neural networks. Its advantages lie in small training data set requirements, fast training, inherent memory and high flexibility for various hardware implementations. It originated from computational neuroscience and machine learning but has, in recent years, spread dramatically, and has been introduced into a wide variety of fields, including complex systems science, physics, material science, biological science, quantum machine learning, optical communication systems, and robotics. Reviewing the current state of the art and providing a concise guide to the field, this book introduces readers to its basic concepts, theory, techniques, physical implementations and applications. The book is sub-structured into two major parts: theory and physical implementations. Both parts consist of a compilation of chapters, authored by leading experts in their respective fields. The first part is devoted to theoretical developments of RC, extending the framework from the conventional recurrent neural network context to a more general dynamical systems context. With this broadened perspective, RC is not restricted to the area of machine learning but is being connected to a much wider class of systems. The second part of the book focuses on the utilization of physical dynamical systems as reservoirs, a framework referred to as physical reservoir computing. A variety of physical systems and substrates have already been suggested and used for the implementation of reservoir computing. Among these physical systems which cover a wide range of spatial and temporal scales, are mechanical and optical systems, nanomaterials, spintronics, and quantum many body systems. This book offers a valuable resource for researchers (Ph.D. students and experts alike) and practitioners working in the field of machine learning, artificial intelligence, robotics, neuromorphic computing, complex systems, and physics.