Emerging Approaches for Typing, Detection, Characterization, and Traceback of Escherichia coli, 2nd Edition

Emerging Approaches for Typing, Detection, Characterization, and Traceback of Escherichia coli, 2nd Edition PDF

Author: Pina M. Fratamico

Publisher: Frontiers Media SA

Published: 2018-05-02

Total Pages: 172

ISBN-13: 2889454339

DOWNLOAD EBOOK →

Pathogenic Escherichia coli strains cause a large number of diseases in humans, including diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, urinary tract infections, and neonatal meningitis, while in animals they cause diseases such as calf scours and mastitis in cattle, post-weaning diarrhea and edema disease in pigs, and peritonitis and airsacculitis in chickens. The different E. coli pathotypes are characterized by the presence of specific sets of virulence-related genes. Therefore, it is not surprising that pathogenic E. coli constitutes a genetically heterogeneous family of bacteria, and they are continuing to evolve. Rapid and accurate molecular methods are critically needed to detect and trace pathogenic E. coli in food and animals. They are also needed for epidemiological investigations to enhance food safety, as well as animal and human health and to minimize the size and geographical extent of outbreaks. The serotype of E. coli strains has traditionally been determined using antisera raised against the >180 different O- (somatic) and 53 H- (flagellar) antigens. However, there are many problems associated with serotyping, including: it is labor-intensive and time consuming; cross reactivity of the antisera with different serogroups occurs; antisera are available only in specialized laboratories; and many strains are non-typeable. Molecular serotyping targeting O-group-specific genes within the E. coli O-antigen gene clusters and genes that are involved in encoding for the different flagellar types offers an improved approach for determining the E. coliO- and H-groups. Furthermore, molecular serotyping can be coupled with determination of specific sets of virulence genes carried by the strain offering the possibility to determine O-group, pathotype, and the pathogenic potential simultaneously. Sequencing of the O-antigen gene clusters of all of the known O-groups of E. coli is now complete, and the sequences have been deposited in the GenBank database. The sequence information has revealed that some E. coli serogroups have identical sequences while others have point mutations or insertion sequences and type as different serogroups in serological reactions. There are also a number of other ambiguities in serotyping that need to be resolved. Furthermore, new E. coli O-groups are being identified. Therefore, there is an essential need to resolve these issues and to revise the E. coli serotype nomenclature based on these findings. There are emerging technologies that can potentially be applied for molecular serotyping and detection and characterization of E. coli. On a related topic, the genome sequence of thousands of E. coli strains have been deposited in GenBank, and this information is revealing unique markers such as CRISPR (clustered regularly interspaced short palindromic repeats) and virulence gene markers that could be used to identify E. coli pathotypes. Whole genome sequencing now provides the opportunity to study the role of horizontal gene transfer in the evolution and emergence of pathogenic E. coli strains. Whole genome sequencing approaches are being investigated for genotyping and outbreak investigation for regulatory and public health needs; however, there is a need for establishing bioinformatics pipelines able to handle large amounts of data as we move toward the use of genetic approaches for non-culture-based detection and characterization of E. coli and for outbreak investigations.

Emerging Approaches for Typing, Detection, Characterization, and Traceback of Escherichia Coli, 2nd Edition

Emerging Approaches for Typing, Detection, Characterization, and Traceback of Escherichia Coli, 2nd Edition PDF

Author:

Publisher:

Published: 2018

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK →

Pathogenic Escherichia coli strains cause a large number of diseases in humans, including diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, urinary tract infections, and neonatal meningitis, while in animals they cause diseases such as calf scours and mastitis in cattle, post-weaning diarrhea and edema disease in pigs, and peritonitis and airsacculitis in chickens. The different E. coli pathotypes are characterized by the presence of specific sets of virulence-related genes. Therefore, it is not surprising that pathogenic E. coli constitutes a genetically heterogeneous family of bacteria, and they are continuing to evolve. Rapid and accurate molecular methods are critically needed to detect and trace pathogenic E. coli in food and animals. They are also needed for epidemiological investigations to enhance food safety, as well as animal and human health and to minimize the size and geographical extent of outbreaks. The serotype of E. coli strains has traditionally been determined using antisera raised against the >180 different O- (somatic) and 53 H- (flagellar) antigens. However, there are many problems associated with serotyping, including: it is labor-intensive and time consuming; cross reactivity of the antisera with different serogroups occurs; antisera are available only in specialized laboratories; and many strains are non-typeable. Molecular serotyping targeting O-group-specific genes within the E. coli O-antigen gene clusters and genes that are involved in encoding for the different flagellar types offers an improved approach for determining the E. coliO- and H-groups. Furthermore, molecular serotyping can be coupled with determination of specific sets of virulence genes carried by the strain offering the possibility to determine O-group, pathotype, and the pathogenic potential simultaneously. Sequencing of the O-antigen gene clusters of all of the known O-groups of E. coli is now complete, and the sequences have been deposited in the GenBank database. The sequence information has revealed that some E. coli serogroups have identical sequences while others have point mutations or insertion sequences and type as different serogroups in serological reactions. There are also a number of other ambiguities in serotyping that need to be resolved. Furthermore, new E. coli O-groups are being identified. Therefore, there is an essential need to resolve these issues and to revise the E. coli serotype nomenclature based on these findings. There are emerging technologies that can potentially be applied for molecular serotyping and detection and characterization of E. coli. On a related topic, the genome sequence of thousands of E. coli strains have been deposited in GenBank, and this information is revealing unique markers such as CRISPR (clustered regularly interspaced short palindromic repeats) and virulence gene markers that could be used to identify E. coli pathotypes. Whole genome sequencing now provides the opportunity to study the role of horizontal gene transfer in the evolution and emergence of pathogenic E. coli strains. Whole genome sequencing approaches are being investigated for genotyping and outbreak investigation for regulatory and public health needs; however, there is a need for establishing bioinformatics pipelines able to handle large amounts of data as we move toward the use of genetic approaches for non-culture-based detection and characterization of E. coli and for outbreak investigations.

Emerging Approaches for Typing, Detection, Characterization, and Traceback of Escherichia Coli

Emerging Approaches for Typing, Detection, Characterization, and Traceback of Escherichia Coli PDF

Author:

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK →

Pathogenic Escherichia coli strains cause a large number of diseases in humans, including diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, urinary tract infections, and neonatal meningitis, while in animals they cause diseases such as calf scours and mastitis in cattle, post-weaning diarrhea and edema disease in pigs, and peritonitis and airsacculitis in chickens. The different E. coli pathotypes are characterized by the presence of specific sets of virulence-related genes. Therefore, it is not surprising that pathogenic E. coli constitutes a genetically heterogeneous family of bacteria, and they are continuing to evolve. Rapid and accurate molecular methods are critically needed to detect and trace pathogenic E. coli in food and animals. They are also needed for epidemiological investigations to enhance food safety, as well as animal and human health and to minimize the size and geographical extent of outbreaks. The serotype of E. coli strains has traditionally been determined using antisera raised against the >180 different O- (somatic) and 53 H- (flagellar) antigens. However, there are many problems associated with serotyping, including: it is labor-intensive and time consuming; cross reactivity of the antisera with different serogroups occurs; antisera are available only in specialized laboratories; and many strains are non-typeable. Molecular serotyping targeting O-group-specific genes within the E. coli O-antigen gene clusters and genes that are involved in encoding for the different flagellar types offers an improved approach for determining the E. coli O- and H-groups. Furthermore, molecular serotyping can be coupled with determination of specific sets of virulence genes carried by the strain offering the possibility to determine O-group, pathotype, and the pathogenic potential simultaneously. Sequencing of the O-antigen gene clusters of all of the known O-groups of E. coli is now complete, and the sequences have been deposited in the GenBank database. The sequence information has revealed that some E. coli serogroups have identical sequences while others have point mutations or insertion sequences and type as different serogroups in serological reactions. There are also a number of other ambiguities in serotyping that need to be resolved. Furthermore, new E. coli O-groups are being identified. Therefore, there is an essential need to resolve these issues and to revise the E. coli serotype nomenclature based on these findings. There are emerging technologies that can potentially be applied for molecular serotyping and detection and characterization of E. coli. On a related topic, the genome sequence of thousands of E. coli strains have been deposited in GenBank, and this information is revealing unique markers such as CRISPR (clustered regularly interspaced short palindromic repeats) and virulence gene markers that could be used to identify E. coli pathotypes. Whole genome sequencing now provides the opportunity to study the role of horizontal gene transfer in the evolution and emergence of pathogenic E. coli strains. Whole genome sequencing approaches are being investigated for genotyping and outbreak investigation for regulatory and public health needs; however, there is a need for establishing bioinformatics pipelines able to handle large amounts of data as we move toward the use of genetic approaches for non-culture-based detection and characterization of E. coli and for outbreak investigations.

Detection and Typing Strategies for Pathogenic Escherichia coli

Detection and Typing Strategies for Pathogenic Escherichia coli PDF

Author: Lucia Rivas

Publisher: Springer

Published: 2015-01-28

Total Pages: 114

ISBN-13: 1493923463

DOWNLOAD EBOOK →

This Brief will review the methods that are currently available for the detection, isolation, and typing of pathogenic E. coli with a particular focus on foodborne diseases caused by the Shiga toxigenic E. coli group, which have been implicated in a number of significant outbreaks in recent years. Pathogenic forms of E. coli can cause a variety of diarrheal diseases in hosts due to the presence of specific colonization and virulence factors, and pathogenicity-associated genes, which are generally not present in other E. coli. Six pathotypes of pathogenic E. coli are recognized (Shiga toxigenic E. coli, Enteropathogenic E. coli, Enterotoxigenic E. coli, Enteroinvasive E. coli, Enteroaggregative E. coli and Diffusely Adherent E. coli) and certain strains among these groups are major public health concerns due to the severity of disease that they can cause. Methods to detect and isolate these pathogens from a variety of sources are constantly evolving. In addition, the accumulation of knowledge on these pathogens allows for improved intervention strategies.

The Federal Meat Inspection Program

The Federal Meat Inspection Program PDF

Author: United States. Congress. Senate. Committee on Agriculture, Nutrition, and Forestry. Subcommittee on Agricultural Research, Conservation, Forestry, and General Legislation

Publisher:

Published: 1995

Total Pages: 248

ISBN-13:

DOWNLOAD EBOOK →

Distributed to some depository libraries in microfiche.

Handbook of Vegetable Preservation and Processing

Handbook of Vegetable Preservation and Processing PDF

Author: Y. H. Hui

Publisher: CRC Press

Published: 2003-09-12

Total Pages: 766

ISBN-13: 9780203912911

DOWNLOAD EBOOK →

Representing the vanguard in the field with research from more than 35 international experts spanning governmental, industrial, and academic sectors, the Handbook of Vegetable Preservation and Processing compiles the latest science and technology in the processing and preservation of vegetables and vegetable products. This reference serves as the only guide to compile key tools used in the United States to safeguard and protect the quality of fresh and processed vegetables. A vast and contemporary source, it considers recent issues in vegetable processing safety such as modified atmosphere packaging, macroanalytical methods, and new technologies in microbial inactivation.

The Bad Bug Book

The Bad Bug Book PDF

Author: FDA

Publisher: Imp

Published: 2004

Total Pages: 356

ISBN-13:

DOWNLOAD EBOOK →

The Bad Bug was created from the materials assembled at the FDA website of the same name. This handbook provides basic facts regarding foodborne pathogenic microorganisms and natural toxins. It brings together in one place information from the Food & Drug Administration, the Centers for Disease Control & Prevention, the USDA Food Safety Inspection Service, and the National Institutes of Health.