Embedded Memories for Nano-Scale VLSIs

Embedded Memories for Nano-Scale VLSIs PDF

Author: Kevin Zhang

Publisher: Springer Science & Business Media

Published: 2009-04-21

Total Pages: 390

ISBN-13: 0387884971

DOWNLOAD EBOOK →

Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.

Energy Efficient and Reliable Embedded Nanoscale SRAM Design

Energy Efficient and Reliable Embedded Nanoscale SRAM Design PDF

Author: Bhupendra Singh Reniwal

Publisher: CRC Press

Published: 2023-11-29

Total Pages: 221

ISBN-13: 100098513X

DOWNLOAD EBOOK →

This reference text covers a wide spectrum for designing robust embedded memory and peripheral circuitry. It will serve as a useful text for senior undergraduate and graduate students and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discusses low-power design methodologies for static random-access memory (SRAM) Covers radiation-hardened SRAM design for aerospace applications Focuses on various reliability issues that are faced by submicron technologies Exhibits more stable memory topologies Nanoscale technologies unveiled significant challenges to the design of energy- efficient and reliable SRAMs. This reference text investigates the impact of process variation, leakage, aging, soft errors and related reliability issues in embedded memory and periphery circuitry. The text adopts a unique way to explain the SRAM bitcell, array design, and analysis of its design parameters to meet the sub-nano-regime challenges for complementary metal-oxide semiconductor devices. It comprehensively covers low- power-design methodologies for SRAM, exhibits more stable memory topologies, and radiation-hardened SRAM design for aerospace applications. Every chapter includes a glossary, highlights, a question bank, and problems. The text will serve as a useful text for senior undergraduate students, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discussing comprehensive studies of variability-induced failure mechanism in sense amplifiers and power, delay, and read yield trade-offs, this reference text will serve as a useful text for senior undergraduate, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. It covers the development of robust SRAMs, well suited for low-power multi-core processors for wireless sensors node, battery-operated portable devices, personal health care assistants, and smart Internet of Things applications.

VLSI Design and Test

VLSI Design and Test PDF

Author: S. Rajaram

Publisher: Springer

Published: 2019-01-24

Total Pages: 722

ISBN-13: 9811359504

DOWNLOAD EBOOK →

This book constitutes the refereed proceedings of the 22st International Symposium on VLSI Design and Test, VDAT 2018, held in Madurai, India, in June 2018. The 39 full papers and 11 short papers presented together with 8 poster papers were carefully reviewed and selected from 231 submissions. The papers are organized in topical sections named: digital design; analog and mixed signal design; hardware security; micro bio-fluidics; VLSI testing; analog circuits and devices; network-on-chip; memory; quantum computing and NoC; sensors and interfaces.

Nanoscale Semiconductor Memories

Nanoscale Semiconductor Memories PDF

Author: Santosh K. Kurinec

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 448

ISBN-13: 1466560614

DOWNLOAD EBOOK →

Nanoscale memories are used everywhere. From your iPhone to a supercomputer, every electronic device contains at least one such type. With coverage of current and prototypical technologies, Nanoscale Semiconductor Memories: Technology and Applications presents the latest research in the field of nanoscale memories technology in one place. It also covers a myriad of applications that nanoscale memories technology has enabled. The book begins with coverage of SRAM, addressing the design challenges as the technology scales, then provides design strategies to mitigate radiation induced upsets in SRAM. It discusses the current state-of-the-art DRAM technology and the need to develop high performance sense amplifier circuitry. The text then covers the novel concept of capacitorless 1T DRAM, termed as Advanced-RAM or A-RAM, and presents a discussion on quantum dot (QD) based flash memory. Building on this foundation, the coverage turns to STT-RAM, emphasizing scalable embedded STT-RAM, and the physics and engineering of magnetic domain wall "racetrack" memory. The book also discusses state-of-the-art modeling applied to phase change memory devices and includes an extensive review of RRAM, highlighting the physics of operation and analyzing different materials systems currently under investigation. The hunt is still on for universal memory that fits all the requirements of an "ideal memory" capable of high-density storage, low-power operation, unparalleled speed, high endurance, and low cost. Taking an interdisciplinary approach, this book bridges technological and application issues to provide the groundwork for developing custom designed memory systems.

Enabling the Internet of Things

Enabling the Internet of Things PDF

Author: Massimo Alioto

Publisher: Springer

Published: 2017-01-23

Total Pages: 520

ISBN-13: 3319514822

DOWNLOAD EBOOK →

This book offers the first comprehensive view on integrated circuit and system design for the Internet of Things (IoT), and in particular for the tiny nodes at its edge. The authors provide a fresh perspective on how the IoT will evolve based on recent and foreseeable trends in the semiconductor industry, highlighting the key challenges, as well as the opportunities for circuit and system innovation to address them. This book describes what the IoT really means from the design point of view, and how the constraints imposed by applications translate into integrated circuit requirements and design guidelines. Chapter contributions equally come from industry and academia. After providing a system perspective on IoT nodes, this book focuses on state-of-the-art design techniques for IoT applications, encompassing the fundamental sub-systems encountered in Systems on Chip for IoT: ultra-low power digital architectures and circuits low- and zero-leakage memories (including emerging technologies) circuits for hardware security and authentication System on Chip design methodologies on-chip power management and energy harvesting ultra-low power analog interfaces and analog-digital conversion short-range radios miniaturized battery technologies packaging and assembly of IoT integrated systems (on silicon and non-silicon substrates). As a common thread, all chapters conclude with a prospective view on the foreseeable evolution of the related technologies for IoT. The concepts developed throughout the book are exemplified by two IoT node system demonstrations from industry. The unique balance between breadth and depth of this book: enables expert readers quickly to develop an understanding of the specific challenges and state-of-the-art solutions for IoT, as well as their evolution in the foreseeable future provides non-experts with a comprehensive introduction to integrated circuit design for IoT, and serves as an excellent starting point for further learning, thanks to the broad coverage of topics and selected references makes it very well suited for practicing engineers and scientists working in the hardware and chip design for IoT, and as textbook for senior undergraduate, graduate and postgraduate students ( familiar with analog and digital circuits).

Ultra-Low Voltage Nano-Scale Memories

Ultra-Low Voltage Nano-Scale Memories PDF

Author: Kiyoo Itoh

Publisher: Springer Science & Business Media

Published: 2007-09-04

Total Pages: 351

ISBN-13: 0387688536

DOWNLOAD EBOOK →

Ultra-low voltage large-scale integrated circuits (LSIs) in nano-scale technologies are needed both to meet the needs of a rapidly growing mobile cell phone market and to offset a significant increase in the power dissipation of high-end microprocessor units. The goal of this book is to provide a detailed explanation of the state-of-the-art nanometer and sub-1-V memory LSIs that are playing decisive roles in power conscious systems. Emerging problems between the device, circuit, and system levels are systematically discussed in terms of reliable high-speed operations of memory cells and peripheral logic circuits. The effectiveness of solutions at device and circuit levels is also described at length through clarifying noise components in an array, and even essential differences in ultra-low voltage operations between DRAMs and SRAMs.

Processing-in-Memory for AI

Processing-in-Memory for AI PDF

Author: Joo-Young Kim

Publisher: Springer Nature

Published: 2022-07-09

Total Pages: 168

ISBN-13: 3030987817

DOWNLOAD EBOOK →

This book provides a comprehensive introduction to processing-in-memory (PIM) technology, from its architectures to circuits implementations on multiple memory types and describes how it can be a viable computer architecture in the era of AI and big data. The authors summarize the challenges of AI hardware systems, processing-in-memory (PIM) constraints and approaches to derive system-level requirements for a practical and feasible PIM solution. The presentation focuses on feasible PIM solutions that can be implemented and used in real systems, including architectures, circuits, and implementation cases for each major memory type (SRAM, DRAM, and ReRAM).

Electrical and Electronic Devices, Circuits, and Materials

Electrical and Electronic Devices, Circuits, and Materials PDF

Author: Suman Lata Tripathi

Publisher: John Wiley & Sons

Published: 2021-03-24

Total Pages: 608

ISBN-13: 1119755085

DOWNLOAD EBOOK →

The increasing demand for electronic devices for private and industrial purposes lead designers and researchers to explore new electronic devices and circuits that can perform several tasks efficiently with low IC area and low power consumption. In addition, the increasing demand for portable devices intensifies the call from industry to design sensor elements, an efficient storage cell, and large capacity memory elements. Several industry-related issues have also forced a redesign of basic electronic components for certain specific applications. The researchers, designers, and students working in the area of electronic devices, circuits, and materials sometimesneed standard examples with certain specifications. This breakthrough work presents this knowledge of standard electronic device and circuit design analysis, including advanced technologies and materials. This outstanding new volume presents the basic concepts and fundamentals behind devices, circuits, and systems. It is a valuable reference for the veteran engineer and a learning tool for the student, the practicing engineer, or an engineer from another field crossing over into electrical engineering. It is a must-have for any library.

Advanced Ultra Low-Power Semiconductor Devices

Advanced Ultra Low-Power Semiconductor Devices PDF

Author: Shubham Tayal

Publisher: John Wiley & Sons

Published: 2023-10-30

Total Pages: 325

ISBN-13: 1394167628

DOWNLOAD EBOOK →

ADVANCED ULTRA LOW-POWER SEMICONDUCTOR DEVICES Written and edited by a team of experts in the field, this important new volume broadly covers the design and applications of metal oxide semiconductor field effect transistors. This outstanding new volume offers a comprehensive overview of cutting-edge semiconductor components tailored for ultra-low power applications. These components, pivotal to the foundation of electronic devices, play a central role in shaping the landscape of electronics. With a focus on emerging low-power electronic devices and their application across domains like wireless communication, biosensing, and circuits, this book presents an invaluable resource for understanding this dynamic field. Bringing together experts and researchers from various facets of the VLSI domain, the book addresses the challenges posed by advanced low-power devices. This collaborative effort aims to propel engineering innovations and refine the practical implementation of these technologies. Specific chapters delve into intricate topics such as Tunnel FET, negative capacitance FET device circuits, and advanced FETs tailored for diverse circuit applications. Beyond device-centric discussions, the book delves into the design intricacies of low-power memory systems, the fascinating realm of neuromorphic computing, and the pivotal issue of thermal reliability. Authors provide a robust foundation in device physics and circuitry while also exploring novel materials and architectures like transistors built on pioneering channel/dielectric materials. This exploration is driven by the need to achieve both minimal power consumption and ultra-fast switching speeds, meeting the relentless demands of the semiconductor industry. The book’s scope encompasses concepts like MOSFET, FinFET, GAA MOSFET, the 5-nm and 7-nm technology nodes, NCFET, ferroelectric materials, subthreshold swing, high-k materials, as well as advanced and emerging materials pivotal for the semiconductor industry’s future.

Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET)

Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET) PDF

Author: Raj, Balwinder

Publisher: IGI Global

Published: 2019-12-06

Total Pages: 255

ISBN-13: 1799813959

DOWNLOAD EBOOK →

With recent advancements in electronics, specifically nanoscale devices, new technologies are being implemented to improve the properties of automated systems. However, conventional materials are failing due to limited mobility, high leakage currents, and power dissipation. To mitigate these challenges, alternative resources are required to advance electronics further into the nanoscale domain. Carbon nanotube field-effect transistors are a potential solution yet lack the information and research to be properly utilized. Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET) is a collection of innovative research on the methods and applications of converting semiconductor devices from micron technology to nanotechnology. The book provides readers with an updated status on existing CNTs, CNTFETs, and their applications and examines practical applications to minimize short channel effects and power dissipation in nanoscale devices and circuits. While highlighting topics including interconnects, digital circuits, and single-wall CNTs, this book is ideally designed for electrical engineers, electronics engineers, students, researchers, academicians, industry professionals, and practitioners working in nanoscience, nanotechnology, applied physics, and electrical and electronics engineering.