Elliptic and Parabolic Methods in Geometry

Elliptic and Parabolic Methods in Geometry PDF

Author: Ben Chow

Publisher: CRC Press

Published: 1996-10-15

Total Pages: 216

ISBN-13: 1439864519

DOWNLOAD EBOOK →

This book documents the results of a workshop held at the Geometry Center (University of Minnesota, Minneapolis) and captures the excitement of the week.

Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Numerical Methods for Elliptic and Parabolic Partial Differential Equations PDF

Author: Peter Knabner

Publisher: Springer Science & Business Media

Published: 2006-05-26

Total Pages: 437

ISBN-13: 0387217622

DOWNLOAD EBOOK →

This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

Elliptic–Hyperbolic Partial Differential Equations

Elliptic–Hyperbolic Partial Differential Equations PDF

Author: Thomas H. Otway

Publisher: Springer

Published: 2015-07-08

Total Pages: 134

ISBN-13: 3319197614

DOWNLOAD EBOOK →

This text is a concise introduction to the partial differential equations which change from elliptic to hyperbolic type across a smooth hypersurface of their domain. These are becoming increasingly important in diverse sub-fields of both applied mathematics and engineering, for example: • The heating of fusion plasmas by electromagnetic waves • The behaviour of light near a caustic • Extremal surfaces in the space of special relativity • The formation of rapids; transonic and multiphase fluid flow • The dynamics of certain models for elastic structures • The shape of industrial surfaces such as windshields and airfoils • Pathologies of traffic flow • Harmonic fields in extended projective space They also arise in models for the early universe, for cosmic acceleration, and for possible violation of causality in the interiors of certain compact stars. Within the past 25 years, they have become central to the isometric embedding of Riemannian manifolds and the prescription of Gauss curvature for surfaces: topics in pure mathematics which themselves have important applications. Elliptic−Hyperbolic Partial Differential Equations is derived from a mini-course given at the ICMS Workshop on Differential Geometry and Continuum Mechanics held in Edinburgh, Scotland in June 2013. The focus on geometry in that meeting is reflected in these notes, along with the focus on quasilinear equations. In the spirit of the ICMS workshop, this course is addressed both to applied mathematicians and to mathematically-oriented engineers. The emphasis is on very recent applications and methods, the majority of which have not previously appeared in book form.

Geometric Methods in PDE’s

Geometric Methods in PDE’s PDF

Author: Giovanna Citti

Publisher: Springer

Published: 2015-10-31

Total Pages: 373

ISBN-13: 3319026666

DOWNLOAD EBOOK →

The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.

Nonlinear Methods in Riemannian and Kählerian Geometry

Nonlinear Methods in Riemannian and Kählerian Geometry PDF

Author: J. Jost

Publisher: Birkhäuser

Published: 2013-04-17

Total Pages: 153

ISBN-13: 3034876904

DOWNLOAD EBOOK →

In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Diisseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature leads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second order nonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more prominent role in geometry. Let us list some of the most important ones: - harmonic maps between Riemannian and Kahlerian manifolds - minimal surfaces in Riemannian manifolds - Monge-Ampere equations on Kahler manifolds - Yang-Mills equations in vector bundles over manifolds. While the solution of these equations usually is nontrivial, it can lead to very signifi cant results in geometry, as solutions provide maps, submanifolds, metrics, or connections which are distinguished by geometric properties in a given context. All these equations are elliptic, but often parabolic equations are used as an auxiliary tool to solve the elliptic ones.

Monge Ampere Equation: Applications to Geometry and Optimization

Monge Ampere Equation: Applications to Geometry and Optimization PDF

Author: Luis A. Caffarelli

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 186

ISBN-13: 0821809172

DOWNLOAD EBOOK →

In recent years, the Monge Ampère Equation has received attention for its role in several new areas of applied mathematics: as a new method of discretization for evolution equations of classical mechanics, such as the Euler equation, flow in porous media, Hele-Shaw flow, etc.; as a simple model for optimal transportation and a div-curl decomposition with affine invariance; and as a model for front formation in meteorology and optimal antenna design. These applications were addressed and important theoretical advances presented at a NSF-CBMS conference held at Florida Atlantic University (Boca Raton). L. Cafarelli and other distinguished specialists contributed high-quality research results and up-to-date developments in the field. This is a comprehensive volume outlining current directions in nonlinear analysis and its applications.

Methods Of Geometry In The Theory Of Partial Differential Equations: Principle Of The Cancellation Of Singularities

Methods Of Geometry In The Theory Of Partial Differential Equations: Principle Of The Cancellation Of Singularities PDF

Author: Takashi Suzuki

Publisher: World Scientific

Published: 2024-01-22

Total Pages: 414

ISBN-13: 9811287910

DOWNLOAD EBOOK →

Mathematical models are used to describe the essence of the real world, and their analysis induces new predictions filled with unexpected phenomena.In spite of a huge number of insights derived from a variety of scientific fields in these five hundred years of the theory of differential equations, and its extensive developments in these one hundred years, several principles that ensure these successes are discovered very recently.This monograph focuses on one of them: cancellation of singularities derived from interactions of multiple species, which is described by the language of geometry, in particular, that of global analysis.Five objects of inquiry, scattered across different disciplines, are selected in this monograph: evolution of geometric quantities, models of multi-species in biology, interface vanishing of d - δ systems, the fundamental equation of electro-magnetic theory, and free boundaries arising in engineering.The relaxation of internal tensions in these systems, however, is described commonly by differential forms, and the reader will be convinced of further applications of this principle to other areas.

Extrinsic Geometric Flows

Extrinsic Geometric Flows PDF

Author: Ben Andrews

Publisher: American Mathematical Society

Published: 2022-03-02

Total Pages: 790

ISBN-13: 1470464578

DOWNLOAD EBOOK →

Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.

Equations in Mathematical Physics

Equations in Mathematical Physics PDF

Author: Victor P. Pikulin

Publisher: Springer Science & Business Media

Published: 2012-01-05

Total Pages: 215

ISBN-13: 3034802676

DOWNLOAD EBOOK →

Many physical processes in fields such as mechanics, thermodynamics, electricity, magnetism or optics are described by means of partial differential equations. The aim of the present book is to demontstrate the basic methods for solving the classical linear problems in mathematical physics of elliptic, parabolic and hyperbolic type. In particular, the methods of conformal mappings, Fourier analysis and Green`s functions are considered, as well as the perturbation method and integral transformation method, among others. Every chapter contains concrete examples with a detailed analysis of their solution.The book is intended as a textbook for students in mathematical physics, but will also serve as a handbook for scientists and engineers.