Electronic, Magnetic, and Optical Materials, Second Edition

Electronic, Magnetic, and Optical Materials, Second Edition PDF

Author: Pradeep Fulay

Publisher: CRC Press

Published: 2016-11-18

Total Pages: 499

ISBN-13: 1498701736

DOWNLOAD EBOOK →

This book integrates materials science with other engineering subjects such as physics, chemistry and electrical engineering. The authors discuss devices and technologies used by the electronics, magnetics and photonics industries and offer a perspective on the manufacturing technologies used in device fabrication. The new addition includes chapters on optical properties and devices and addresses nanoscale phenomena and nanoscience, a subject that has made significant progress in the past decade regarding the fabrication of various materials and devices with nanometer-scale features.

Electronic, Magnetic, and Optical Materials

Electronic, Magnetic, and Optical Materials PDF

Author: Pradeep Fulay

Publisher: CRC Press

Published: 2010-05-05

Total Pages: 436

ISBN-13: 9780849395642

DOWNLOAD EBOOK →

More than ever before, technological developments are blurring the boundaries shared by various areas of engineering (such as electrical, chemical, mechanical, and biomedical), materials science, physics, and chemistry. In response to this increased interdisciplinarity and interdependency of different engineering and science fields, Electronic, Magnetic, and Optical Materials takes a necessarily critical, all-encompassing approach to introducing the fundamentals of electronic, magnetic, and optical properties of materials to students of science and engineering. Weaving together science and engineering aspects, this book maintains a careful balance between fundamentals (i.e., underlying physics-related concepts) and technological aspects (e.g., manufacturing of devices, materials processing, etc.) to cover applications for a variety of fields, including: Nanoscience Electromagnetics Semiconductors Optoelectronics Fiber optics Microelectronic circuit design Photovoltaics Dielectric ceramics Ferroelectrics, piezoelectrics, and pyroelectrics Magnetic materials Building upon his twenty years of experience as a professor, Fulay integrates engineering concepts with technological aspects of materials used in the electronics, magnetics, and photonics industries. This introductory book concentrates on fundamental topics and discusses applications to numerous real-world technological examples—from computers to credit cards to optic fibers—that will appeal to readers at any level of understanding. Gain the knowledge to understand how electronic, optical, and magnetic materials and devices work and how novel devices can be made that can compete with or enhance silicon-based electronics. Where most books on the subject are geared toward specialists (e.g., those working in semiconductors), this long overdue text is a more wide-ranging overview that offers insight into the steadily fading distinction between devices and materials. It is well-suited to the needs of senior-level undergraduate and first-year graduate students or anyone working in industry, regardless of their background or level of experience.

Introduction to the Electronic Properties of Materials

Introduction to the Electronic Properties of Materials PDF

Author: David C. Jiles

Publisher: CRC Press

Published: 2017-12-21

Total Pages: 443

ISBN-13: 1482289369

DOWNLOAD EBOOK →

Electronic materials provide the basis for many high tech industries that have changed rapidly in recent years. In this fully revised and updated second edition, the author discusses the range of available materials and their technological applications. Introduction to the Electronic Properties of Materials, 2nd Edition presents the principles of the behavior of electrons in materials and develops a basic understanding with minimal technical detail. Broadly based, it touches on all of the key issues in the field and offers a multidisciplinary approach spanning physics, electrical engineering, and materials science. It provides an understanding of the behavior of electrons within materials, how electrons determine the magnetic thermal, optical and electrical properties of materials, and how electronic properties are controlled for use in technological applications. Although some mathematics is essential in this area, the mathematics that is used is easy to follow and kept to an appropriate level for the reader. An excellent introductory text for undergraduate students, this book is a broad introduction to the topic and provides a careful balance of information that will be appropriate for physicists, materials scientists, and electrical engineers.

Functional Materials: Electrical, Dielectric, Electromagnetic, Optical And Magnetic Applications (Second Edition)

Functional Materials: Electrical, Dielectric, Electromagnetic, Optical And Magnetic Applications (Second Edition) PDF

Author: Deborah D L Chung

Publisher: World Scientific

Published: 2021-10-28

Total Pages: 553

ISBN-13: 9811238855

DOWNLOAD EBOOK →

The field of functional materials has grown tremendously over the last 5-10 years, due to its richness in both science and applications. This timely compendium covers the science and applications of functional materials in a comprehensive manner that is suitable for readers that do not have background on the electrical, dielectric, electromagnetic, optical and magnetic properties of materials. Prior knowledge of quantum mechanics or solid state physics is also not required. Only a semester of introductory materials science suffices.This unique reference text is tutorial in style and includes numerous example problems, which are lacking in several competing books in the market.The must-have volume benefits undergraduate and graduate students in materials science, mechanical engineering, electrical engineering and aerospace engineering.

Electronic Properties of Materials

Electronic Properties of Materials PDF

Author: Rolf E. Hummel

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 323

ISBN-13: 3662024241

DOWNLOAD EBOOK →

The present book on electrical, optical, magnetic and thermal properties of materials is in many aspects different from other introductory texts in solid state physics. First of all, this book is written for engineers, particularly materials and electrical engineers who want to gain a fundamental under standing of semiconductor devices, magnetic materials, lasers, alloys, etc. Second, it stresses concepts rather than mathematical formalism, which should make the presentation relatively easy to understand. Thus, this book provides a thorough preparation for advanced texts, monographs, or special ized journal articles. Third, this book is not an encyclopedia. The selection oftopics is restricted to material which is considered to be essential and which can be covered in a 15-week semester course. For those professors who want to teach a two-semester course, supplemental topics can be found which deepen the understanding. (These sections are marked by an asterisk [*]. ) Fourth, the present text leaves the teaching of crystallography, X-ray diffrac tion, diffusion, lattice defects, etc. , to those courses which specialize in these subjects. As a rule, engineering students learn this material at the beginning of their upper division curriculum. The reader is, however, reminded of some of these topics whenever the need arises. Fifth, this book is distinctly divided into five self-contained parts which may be read independently.

Electronic, Magnetic, and Optical Materials

Electronic, Magnetic, and Optical Materials PDF

Author: Pradeep Fulay

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 438

ISBN-13: 1439882606

DOWNLOAD EBOOK →

More than ever before, technological developments are blurring the boundaries shared by various areas of engineering (such as electrical, chemical, mechanical, and biomedical), materials science, physics, and chemistry. In response to this increased interdisciplinarity and interdependency of different engineering and science fields, Electronic, Magnetic, and Optical Materials takes a necessarily critical, all-encompassing approach to introducing the fundamentals of electronic, magnetic, and optical properties of materials to students of science and engineering. Weaving together science and engineering aspects, this book maintains a careful balance between fundamentals (i.e., underlying physics-related concepts) and technological aspects (e.g., manufacturing of devices, materials processing, etc.) to cover applications for a variety of fields, including: Nanoscience Electromagnetics Semiconductors Optoelectronics Fiber optics Microelectronic circuit design Photovoltaics Dielectric ceramics Ferroelectrics, piezoelectrics, and pyroelectrics Magnetic materials Building upon his twenty years of experience as a professor, Fulay integrates engineering concepts with technological aspects of materials used in the electronics, magnetics, and photonics industries. This introductory book concentrates on fundamental topics and discusses applications to numerous real-world technological examples—from computers to credit cards to optic fibers—that will appeal to readers at any level of understanding. Gain the knowledge to understand how electronic, optical, and magnetic materials and devices work and how novel devices can be made that can compete with or enhance silicon-based electronics. Where most books on the subject are geared toward specialists (e.g., those working in semiconductors), this long overdue text is a more wide-ranging overview that offers insight into the steadily fading distinction between devices and materials. It is well-suited to the needs of senior-level undergraduate and first-year graduate students or anyone working in industry, regardless of their background or level of experience.

Optical Materials

Optical Materials PDF

Author: Kelly S. Potter

Publisher: Elsevier

Published: 2021-04-22

Total Pages: 532

ISBN-13: 0128226498

DOWNLOAD EBOOK →

Optical Materials, Second Edition, presents, in a unified form, the underlying physical and structural processes that determine the optical behavior of materials. It does this by combining elements from physics, optics, and materials science in a seamless manner, and introducing quantum mechanics when needed. The book groups the characteristics of optical materials into classes with similar behavior. In treating each type of material, the text pays particular attention to atomic composition and chemical makeup, electronic states and band structure, and physical microstructure so that the reader will gain insight into the kinds of materials engineering and processing conditions that are required to produce a material exhibiting a desired optical property. The physical principles are presented on many levels, including a physical explanation, followed by formal mathematical support and examples and methods of measurement. The reader may overlook the equations with no loss of comprehension, or may use the text to find appropriate equations for calculations of optical properties. Includes a fundamental description of optical materials at the beginner and advanced levels Provides a thorough coverage of the field and presents new concepts in an easy to understand manner that combines written explanations and equations Serves as a valuable toolbox of applications and equations for the working reader