Electron Spin Resonance (ESR) Based Quantum Computing

Electron Spin Resonance (ESR) Based Quantum Computing PDF

Author: Takeji Takui

Publisher: Springer

Published: 2016-10-12

Total Pages: 259

ISBN-13: 1493936581

DOWNLOAD EBOOK →

This book addresses electron spin-qubit based quantum computing and quantum information processing with a strong focus on the background and applications to EPR/ESR technique and spectroscopy. It explores a broad spectrum of topics including quantum computing, information processing, quantum effects in electron-nuclear coupled molecular spin systems, adiabatic quantum computing, heat bath algorithmic cooling with spins, and gateway schemes of quantum control for spin networks to NMR quantum information. The organization of the book places emphasis on relevant molecular qubit spectroscopy. These revolutionary concepts have never before been included in a comprehensive volume that covers theory, physical basis, technological basis, applications, and new advances in this emerging field. Electron Spin Resonance (ESR) Based Quantum Computing, co-edited by leading and renowned researchers Takeji Takui, Graeme Hanson and Lawrence J Berliner, is an ideal resource for students and researchers in the fields of EPR/ESR, NMR and quantum computing. This book also • Explores methods of harnessing quantum effects in electron-nuclear coupled molecular spin systems • Expertly discusses applications of optimal control theory in quantum computing • Broadens the readers’ understanding of NMR quantum information processing

Magnetic Resonance Studies of Issues Critical to Solid State Quantum Computer

Magnetic Resonance Studies of Issues Critical to Solid State Quantum Computer PDF

Author: Nakorn Suwuntanasarn

Publisher:

Published: 2008

Total Pages: 356

ISBN-13:

DOWNLOAD EBOOK →

The spins of phosphorus doped in silicon are potential candidates for a quantum computing device, with models based on the use of nuclear and/or electron spins suggested. For a quantum computing device, several essential criteria must be demonstrated before any physical implementation, and these include qubit control gates, long decoherence time and scalability. Scalability and compatibility with existing fabrication technologies are strong points in favour of a silicon based system. For spin based schemes, silicon has the potential to provide a host with zero nuclear spin (isotopically purifed 28Si) and also the phosphorus donor provides both nuclear and electron half integer spins (ideal case). In this work, a magnetic resonance method (electron spin resonance) was utilised to investigate these critical issues (controllable quantum gates and decoherence time) for the electron spins of phosphorus donors in silicon. Electron spin resonance (ESR) studies of an ensemble of phosphorus electron spins in silicon were conducted via both continuous wave and pulsed methods. For pulsed ESR operations, two low temperature (4 K and millikelvin) X-band pulsed ESR systems were built. They were designed especially to suit Si:P decoherence time measurements. The design, modelling, construction and evaluation of the probe heads are described. With the aid of computer simulations, the performance of the probe heads was optimised and a rectangular loop gap resonator was found to be the most suitable for wafer type samples. The resonant frequency, quality factor, and coupling coeffcient were calculated via simulation and are in reasonable agreement with experimental results. This demonstrates the effectiveness of such simulations as a tool for optimising the probe head performance. A millikelvin pulsed ESR system was set up through the combination of a dilution refrigerator, superconducting magnet and the in-house construction of a pulsed ESR spectrometer. This novel system allows pulsed ESR experiments on an ensemble system to be realised down to the millikelvin temperature range, hence providing conditions considered most favourable for quantum computing studies. The use of light in combination with the pulsed ESR systems was also explored in an endeavour to overcome the problem of very long spin-lattice relaxation time, T1, allowing the decoherence time to be measured more effciently. With these novel low temperature pulsed ESR units, two-pulse electron spin echo experiments were conducted on phosphorus donors in silicon (both natural silicon (natSi) and 28Si) with the phosphorus concentration in the range of 1015- 1016 P/cm3 and to lower temperatures than previously investigated. Decoherence times measured for both natSi:P and 28Si:P (with similar donor concentrations) were longer than previously reported. Discussions on several effective ways to obtain even longer Si:P decoherence times including variations to sample configurations and experimental conditions are presented. In addition to the pulsed ESR studies, the Si:P controllable quantum gate functions, A gate and J gate, were examined by the continuous wave technique via Stark shift and exchange interaction experiments respectively. Stark shift experiments on bulk samples were carried out to investigate possible manipulation of the spins by the applied electric field. Continuous wave ESR was also used to examine low energy ion implanted Si:P devices, both by single (P+) and dimer (P+2 ) implanted donors. The outcomes from these studies provide materials information useful in formulating a strategy toward the Si:P device fabrication via the top down approach.

Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures

Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures PDF

Author: Marco Fanciulli

Publisher: Springer Science & Business Media

Published: 2009-08-24

Total Pages: 272

ISBN-13: 3540793658

DOWNLOAD EBOOK →

Here is a discussion of the state of the art of spin resonance in low dimensional structures, such as two-dimensional electron systems, quantum wires, and quantum dots. Leading scientists report on recent advances and discuss open issues and perspectives.

Towards Implementation of Quantum Algorithms Using Electron and Nuclear Spins in Single Crystals

Towards Implementation of Quantum Algorithms Using Electron and Nuclear Spins in Single Crystals PDF

Author: Stéphane Labruyère

Publisher:

Published: 2014

Total Pages: 92

ISBN-13:

DOWNLOAD EBOOK →

Quantum computing set a goal to harness the quantum laws of physics and create computers more powerful than ever imagined. Different technologies can be chosen to implement quantum bits (qubits), each with their advantages and drawbacks. The idea of combining different technologies then seems natural in order to come up with an optimal quantum computer. In this sense, Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR) seem to be the perfect marriage. Indeed, while electron spins can perform quantum gates within nanoseconds, they have to fight very fast decoherence phenomena, the nuclear spins, on the other hand, require longer electromagnetic pulses to be rotated but can be controlled longer without loss of quantum information. Using electron spins as actuators and nuclear spins as memory then appears as the optimal use of this hybrid system. Another fact accounting for this association is that the control of the system through the electron spin requires techniques very similar to the well-known NMR ones. This work focuses on characterizing as precisely as possible the Hamiltonian of a hybrid spin system in a solid-state single crystal, especially the electron-nuclear interactions, to perform high-fidelity control in a home-built pulsed ESR spectrometer. Using this knowledge, we show that we can choose the orientation of the magnetic field with respect to our crystal to obtain optimal experimental conditions. Indeed, with a good knowledge of the Hamiltonian of the system, we want demonstrate high-fidelity quantum control. The final aim of this work is to dynamically supply highly polarized ancilla qubits that can be used in a Quantum Error Correction (QEC) experiment by implementing heat bath algorithmic cooling using a cold electron spin bath. This is an important step towards demonstrating the viability of spin systems for building quantum computers.

Control Techniques in Spin Based Quantum Computation

Control Techniques in Spin Based Quantum Computation PDF

Author: Hemant Katiyar

Publisher:

Published: 2019

Total Pages: 92

ISBN-13:

DOWNLOAD EBOOK →

Working on quantum systems entail different interests, for example, working on fundamental understanding of quantum systems also lay foundation for better quantum computation techniques. A test for whether a system is behaving quantum mechanically or classically is devised by Leggett and Garg in form of inequalities, called Leggett-Garg Inequalities (LGI). Such Inequalities are violated by a system whose evolution is governed by quantum mechanics. A precise experiment to violate LGIs require a guarantee that the measurement does not affect the system or its future dynamics. These Inequalities were proposed for dichotomic systems,systems which can have two outcomes. Here we present an LG experiment on a three-level quantum system, which theoretically have larger quantum upper bound than that of a two-level quantum system. This larger violation also provides a bigger buffer to taking in account of the various experimental imperfections. Performing a quantum computing task requires precise level of control to initialize, perform and measure the quantum system. With increasing size of the quantum processor the challenge is to maintain optimal control. Nuclear Magnetic Resonance (NMR) has always been a very faithful test-bed for quantum processing ideas. In NMR, we perform Radio Frequency (RF) pulses to control and steer the system to the desired state. Most used method to derive the exact frequency and amplitude of these pulses for a given task is based on gradient. Although systematic, one have to simulate these pulses on a classical computer first, which makes the task very inefficient. We report a a way of performing optimization with a hybrid quantum-classical scheme. This scheme helps us perform classically harder computational tasks on the quantum processor. We optimize pulses which drive our system from 7-coherence state to 12-coherence state on a 12-qubit NMR processor. Electron Spin Resonance (ESR) employs the same techniques as of NMR but having advantage in larger polarization compared to later. Although this does not imply better control, cause the frequency at which pulses are required to control an ESR system fall into microwave region. Microwave frequency are harder to control electronically, thus making it harder for performing ESR quantum computing. The hybrid scheme used in NMR experiment relies on some ideal pulses which are needed to be optimized classically. We alleviate this requirement by using finite difference method of calculating gradient. We compare these methods with the earlier methods to show the superiority of such a scheme. State-to-state transfer pulses are sufficient for most of the quantum computing task, but, an universal quantum information implementation requires state independent pulses. The techniques used in optimizing state-to-state pulses can be modified to optimize for a state independent pulse. We show that this methods scale polynomially with the number of qubits and is general in terms of its implementation. We further reduce the resource requirement by using a NMR related implementation.

Single Spin Readout for the Silicon-Based Quantum Computer

Single Spin Readout for the Silicon-Based Quantum Computer PDF

Author:

Publisher:

Published: 2007

Total Pages: 13

ISBN-13:

DOWNLOAD EBOOK →

This report presents research funded under ARO grant DAAD19-02-1-0310 and conducted during the time period of 07/15/2002 - 07/14/2006. In the course of this research we have made major advancements in the development of Magnetic Resonance Force Microscopy (MRFM) on the way towards its application as a single spin readout for the silicon-based quantum computer. The main achievement of this work is the demonstration of electron spin resonance (ESR) signal detection using MRFM with a sensitivity of better than ten fully polarized electron spins. This exceptional sensitivity was enabled by several advances in ultra sensitive MRFM detection: detection of ESR signal with sensitivity of less than ten fully polarized electron spins, detection of the ESR signal of phosphorus donors in doped Si, demonstration of high magnetic field gradients from rare-earth nanomagnetic probe tips, fabrication of ultrasensitive MRFM force sensing cantilevers, development of light-free cantilever displacement-detection techniques, theoretical understanding of cantilever induced spin relaxation and of the MRFM probe-sample interaction, construction of novel MRFM equipment, and preparation of patterned samples for detection of phosphorus ESR in Si.

Electron Paramagnetic Resonance

Electron Paramagnetic Resonance PDF

Author: Victor Chechik

Publisher: Royal Society of Chemistry

Published: 2016-11-30

Total Pages: 246

ISBN-13: 1782629432

DOWNLOAD EBOOK →

The topics covered in this volume describe contrasting types of Electron Paramagnetic Resonance (EPR) application, including inorganic paramagnetic systems, spin-labeling in highly dynamic systems such as RNAs and IDPs and applications of nitroxides in host:guest chemistry. EPR applications remain very significant in modern science and this volume compiles critical coverage of developments in the recent literature by a hand-picked group of researchers at the cutting-edge of the field. Providing a snap shot of the area, this book is a useful addition to any library supporting this research.

Quantum Computing with Spin Qubits in Lithium-doped Silicon

Quantum Computing with Spin Qubits in Lithium-doped Silicon PDF

Author: Erin M. Handberg

Publisher:

Published: 2012

Total Pages: 480

ISBN-13:

DOWNLOAD EBOOK →

Quantum information processing (QIP) is one of the most promising and exciting areas of nanoscience and nanotechnology. Silicon-based quantum computers have become popular candidates for QIP partly because the needed nanoscale manufacturing techniques are well-established for modern silicon electronics. Furthermore, electron spins bound to donors in Si have proven to be some of the most, if not the most, coherent quantum structures among proposed solid state QIP systems to date. Unfortunately, a serious obstacle impeding the physical implementation of quantum computing technology is the ability to readily control quantum bits (qubits). The unique inverted electronic structure of the lithium donor in silicon makes these quantum structures not only strongly coherent, but also readily manipulable. The goal of this work is the development of a complete quantum computing scheme allowing for electrical and piezoelastic control of lithium spin qubits in silicon. To achieve our goal and to enable electrical control of lithium spin qubits, we study the effect of a static electric field on lithium donor spins in silicon. We demonstrate that the anisotropy of the effective mass leads to the anisotropy of the quadratic Stark susceptibility. Using the Dalgarno-Lewis exact summation method, we are able to calculate the Stark susceptibilities and analyze several important physical effects. We show the energy level shifts due to the quadratic Stark effect are equivalent to, and can be mapped onto, those produced by an external stress. Furthermore, we show the energy level shifts, combined with the unique valley-orbit splitting of the Li donor in Si, spin-orbit interaction and specially tuned external stress, leads to a very strong modulation of the donor spin g-factor and electron spin resonance (ESR) lines by the electric field. We propose a complete quantum computing scheme based on Li donors in Si. With the system under external biaxial stress, the qubits are encoded on a ground state Zeeman doublet and arc coupled via the acoustic-phonon-mediated long-range spin-spin interaction. We utilize g-factor control of the qubits to perform a specially-designed sequence of electric field impulses in order to execute both the cz gate and the universal CNOT gate. Using the quadratic Stark effect calculations and electron-phonon decoherence times, we estimate that the typical two-qubit gate time is on the order of ~ 1 [us] with a quality factor of [~ 10 -6]. A possible extension to these results is the piezoelastic control of spin qubits in semiconductors, which may open new avenues in solid state quantum information processing. This work has been supported by the following agencies: the National Security Agency (NSA), the Army Research Office (ARO) and the National Aeronautics and Space Administration (NASA).

Endohedral Fullerenes: Electron Transfer and Spin

Endohedral Fullerenes: Electron Transfer and Spin PDF

Author: Alexey A. Popov

Publisher: Springer

Published: 2017-05-23

Total Pages: 333

ISBN-13: 3319470493

DOWNLOAD EBOOK →

This book discusses recent progress in endohedral fullerenes – their production and separation techniques, as well as their characterization and properties. Furthermore, the book delves into the all-important issue of stability by investigating electron transfer between the encapsulated metal species and the carbon cage. It also reviews spin-based phenomena caused by the shielding of endohedral spin by the fullerene, and analyzes formation of the spin states by charge transfer as studied by electron spin resonance. Tuning of charge states of endohedral species and of spin states of both the cage and the cluster are explained. Finally, the book considers the recent discovery of magnetism in some endohedral fullerenes, and the potential for quantum computing.