Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF

Author: R.F. Egerton

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 491

ISBN-13: 1475750994

DOWNLOAD EBOOK →

to the Second Edition Since the first (1986) edition of this book, the numbers of installations, researchers, and research publications devoted to electron energy-loss spec troscopy (EELS) in the electron microscope have continued to expand. There has been a trend towards intermediate accelerating voltages and field-emission sources, both favorable to energy-loss spectroscopy, and sev eral types of energy-filtering microscope are now available commercially. Data-acquisition hardware and software, based on personal computers, have become more convenient and user-friendly. Among university re searchers, much thought has been given to the interpretation and utilization of near-edge fine structure. Most importantly, there have been many practi cal applications of EELS. This may reflect an increased awareness of the potentialities of the technique, but in many cases it is the result of skill and persistence on the part of the experimenters, often graduate students. To take account of these developments, the book has been extensively revised (over a period of two years) and more than a third of it rewritten. I have made various minor changes to the figures and added about 80 new ones. Except for a few small changes, the notation is the same as in the first edition, with all equations in SI units.

Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF

Author: R.F. Egerton

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 418

ISBN-13: 1461568870

DOWNLOAD EBOOK →

Electron energy-loss spectroscopy (EELS or ELS) has been used to investi gate the physical properties of solids for over 40 years in a handful of laboratories distributed around the world. More recently, electron micro scopists have become interested in EELS as a method of chemical analysis with the potential for achieving very high sensitivity and spatial resolution, and there is a growing awareness of the fact that the loss spectrum can provide structural information from a thin specimen. In comparison with energy-dispersive x-ray spectroscopy, for example, EELS is a fairly demand ing technique, requiring for its full exploitation a knowledge of atomic and solid-state physics, electron optics, and electronics. In writing this book, I have tried to gather together relevant information from these various fields. Chapter 1 begins at an elementary level; readers with some experience in EELS will be familiar with the content of the first two sections. Chapter 2 deals with instrumentation and experimental technique, and should con tain material of interest to researchers who want to get the best performance out of commercial equipment as well as those who contemplate building their own spectrometer or electron-detection system. Chapter 3 outlines the theory used to interpret spectral features, while Chapter 4 gives procedures for numerical processing of the energy-loss spectrum. Chapter 5 contains examples of practical applications of EELS and a discussion of radiation damage, spatial resolution, and detection limits.

Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF

Author: R. F. Egerton

Publisher: Springer Science & Business Media

Published: 1996

Total Pages: 506

ISBN-13: 9780306452239

DOWNLOAD EBOOK →

A comprehensive guide to a technique for the chemical and structural analysis of thin specimens in a transmission electron microscope. About a third of the text has been rewritten from the 1986 first edition to reflect the substantial developments in methods, instruments, applications, and interpret

Electron Energy Loss Spectroscopy and Surface Vibrations

Electron Energy Loss Spectroscopy and Surface Vibrations PDF

Author: H. Ibach

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 379

ISBN-13: 1483259455

DOWNLOAD EBOOK →

Electron Energy Loss Spectroscopy and Surface Vibrations is devoted to electron energy loss spectroscopy as a probe of the crystal surface. Electrons with energy in the range of a few electron volts sample only a few atomic layers. As they approach or exit from the crystal, they interact with the vibrational modes of the crystal surface, or possibly with other elementary excitations localized there. The energy spectrum of electrons back-reflected from the surface is thus a rich source of information on its dynamics. The book opens with a detailed analysis of the physics that controls the operation of the monochromator, which is the core of the experimental apparatus. Separate chapters follow on the interaction of electrons with vibrational modes of the surface region and with other elementary excitations in the vicinity; the lattice dynamics of clean and adsorbate-covered surfaces, with emphasis on those features of particular relevance to surface vibrational spectroscopy; and selected applications vibration spectroscopy in surface physics and chemistry.

Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas

Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas PDF

Author: Channing C. Ahn

Publisher: John Wiley & Sons

Published: 2006-03-06

Total Pages: 472

ISBN-13: 3527604774

DOWNLOAD EBOOK →

This book/CD package provides a reference on electron energy loss spectrometry (EELS) with the transmission electron microscope, an established technique for chemical and structural analysis of thin specimens in a transmission electron microscope. Describing the issues of instrumentation, data acquisition, and data analysis, the authors apply this technique to several classes of materials, namely ceramics, metals, polymers, minerals, semiconductors, and magnetic materials. The accompanying CD-ROM consists of a compendium of experimental spectra.

Electron Energy Loss Spectroscopy

Electron Energy Loss Spectroscopy PDF

Author: R. Brydson

Publisher: Garland Science

Published: 2020-08-13

Total Pages: 237

ISBN-13: 1000144623

DOWNLOAD EBOOK →

Electron Energy Loss Spectroscopy (EELS) is a high resolution technique used for the analysis of thin samples of material. The technique is used in many modern transmission electron microscopes to characterise materials. This book provides an up-to-date introduction to the principles and applications of EELS. Specific topics covered include, theory of EELS, elemental quantification, EELS fine structure, EELS imaging and advanced techniques.

Encyclopedia of Tribology

Encyclopedia of Tribology PDF

Author: Q. Jane Wang

Publisher: Springer

Published: 2013-09-26

Total Pages: 4139

ISBN-13: 9780387928982

DOWNLOAD EBOOK →

TRIBOLOGY – the study of friction, wear and lubrication – impacts almost every aspect of our daily lives. The Springer Encyclopedia of Tribology is an authoritative and comprehensive reference covering all major aspects of the science and engineering of tribology that are relevant to researchers across all engineering industries and related scientific disciplines. This is the first major reference that brings together the science, engineering and technological aspects of tribology of this breadth and scope in a single work. Developed and written by leading experts in the field, the Springer Encyclopedia of Tribology covers the fundamentals as well as advanced applications across material types, different length and time scales, and encompassing various engineering applications and technologies. Exciting new areas such as nanotribology, tribochemistry and biotribology have also been included. As a six-volume set, the Springer Encyclopedia of Tribology comprises 1630 entries written by authoritative experts in each subject area, under the guidance of an international panel of key researchers from academia, national laboratories and industry. With alphabetically-arranged entries, concept diagrams and cross-linking features, this comprehensive work provides easy access to essential information for both researchers and practicing engineers in the fields of engineering (aerospace, automotive, biomedical, chemical, electrical, and mechanical) as well as materials science, physics, and chemistry.

Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF

Author: R.F. Egerton

Publisher: Springer Science & Business Media

Published: 2011-07-29

Total Pages: 498

ISBN-13: 1441995838

DOWNLOAD EBOOK →

Within the last 30 years, electron energy-loss spectroscopy (EELS) has become a standard analytical technique used in the transmission electron microscope to extract chemical and structural information down to the atomic level. In two previous editions, Electron Energy-Loss Spectroscopy in the Electron Microscope has become the standard reference guide to the instrumentation, physics and procedures involved, and the kind of results obtainable. Within the last few years, the commercial availability of lens-aberration correctors and electron-beam monochromators has further increased the spatial and energy resolution of EELS. This thoroughly updated and revised Third Edition incorporates these new developments, as well as advances in electron-scattering theory, spectral and image processing, and recent applications in fields such as nanotechnology. The appendices now contain a listing of inelastic mean free paths and a description of more than 20 MATLAB programs for calculating EELS data.

4D Electron Microscopy

4D Electron Microscopy PDF

Author: Ahmed H. Zewail

Publisher: World Scientific

Published: 2010

Total Pages: 359

ISBN-13: 1848163908

DOWNLOAD EBOOK →

Structural phase transitions, mechanical deformations, and the embryonic stages of melting and crystallization are examples of phenomena that can now be imaged in unprecedented structural detail with high spatial resolution, and ten orders of magnitude as fast as hitherto. No monograph in existence attempts to cover the revolutionary dimensions that EM in its various modes of operation nowadays makes possible. The authors of this book chart these developments, and also compare the merits of coherent electron waves with those of synchrotron radiation. They judge it prudent to recall some important basic procedural and theoretical aspects of imaging and diffraction so that the reader may better comprehend the significance of the new vistas and applications now afoot. This book is not a vade mecum - numerous other texts are available for the practitioner for that purpose.