Electron Dynamics of Diode Regions

Electron Dynamics of Diode Regions PDF

Author: Charles K. Birdsall

Publisher: Elsevier

Published: 1966-01-01

Total Pages: 287

ISBN-13: 032316241X

DOWNLOAD EBOOK →

Electron Dynamics of Diode Regions describes the model construction and analysis of motion of charged particles of diode regions in time-varying fields. The models analyzed are simplified versions of parts of practical devices, primarily active microwave devices, tubes, and semiconductor amplifiers, while the most striking results obtained are due to electron inertia and space-charge effects in terms of laboratory observable. This book is composed of seven chapters, and begins with an introduction to the general concepts of time dependent flow, including induced current, the techniques of linearization, calculating variational transit time, and obtaining equivalent circuits. The following chapters present the classical linear analysis, which includes the space-charge effects, with several applications. These chapters also explore the existence of a maximum stable current in a space-charge limited diode. The discussion then shifts to the basics of high velocity, klystron, gap with nonuniform field distributions, and the application of the multicavity klystron. This text further covers the analysis and examples of crossed-field gaps. The final chapters deal with the fundamentals of velocity and current distributions obtained from common electron emitters, with some attempt to show how the multivelocity streams evolve into single-velocity equivalents needed for the methods of earlier chapters. Results of applying the Lagrangian starting analysis to semiconductor diode regions, necessarily from a new equation of motion, are also provided. This book is intended for graduate courses, seminars, and research studies.

Physics Of Nonneutral Plasmas

Physics Of Nonneutral Plasmas PDF

Author: Ronald C Davidson

Publisher: World Scientific Publishing Company

Published: 2001-10-22

Total Pages: 755

ISBN-13: 1911298194

DOWNLOAD EBOOK →

A nonneutral plasma is a many-body collection of charged particles in which there is not overall charge neutrality. The diverse areas of application of nonneutral plasmas include: precision atomic clocks, trapping of antimatter plasmas and antihydrogen production, quantum computers, nonlinear vortex dynamics and fundamental transport processes in trapped nonneutral plasmas, strongly-coupled one-component plasmas and Coulomb crystals, coherent radiation generation in free electron devices, such as free electron lasers, magnetrons and cyclotron masers, and intense charged particle beam propagation in periodic focusing accelerators and transport systems, to mention a few examples. Physics of Nonneutral Plasmas is a graduate-level text — complete with 138 assigned problems and the results from several classic experiments — which covers a broad range of topics related to the fundamental properties of collective processes and nonlinear dynamics of one-component and multispecies charged particle systems in which there is not overall charge neutrality. The subject matter is treated systematically from first principles, using a unified theoretical approach, and the emphasis is on the development of basic concepts that illustrate the underlying physical processes in circumstances where intense self fields play a major role in determining the evolution of the system. The theoretical analysis includes the full influence of dc space charge effects on detailed equilibrium, stability and transport properties. The statistical models used to describe the properties of nonneutral plasmas are based on the nonlinear Vlasov-Maxwell equations, the macroscopic fluid-Maxwell equations, or the Klimontovich-Maxwell equations, as appropriate, and extensive use is made of theoretical techniques developed in the description of multispecies electrically-neutral plasmas, as well as established techniques in classical mechanics, electrodynamics and statistical physics.Physics of Nonneutral Plasmas emphasizes basic physics principles, and the thorough presentation style is intended to have a lasting appeal to graduate students and researchers alike. Because of the advanced theoretical techniques developed for describing one-component charged particle systems, this book serves as a useful companion volume to Physics of Intense Charged Particle Beams in High Energy Accelerators by Ronald C Davidson and Hong Qin.

Plasma Physics via Computer Simulation

Plasma Physics via Computer Simulation PDF

Author: C.K. Birdsall

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 504

ISBN-13: 1482263068

DOWNLOAD EBOOK →

Divided into three main parts, the book guides the reader to an understanding of the basic concepts in this fascinating field of research. Part 1 introduces you to the fundamental concepts of simulation. It examines one-dimensional electrostatic codes and electromagnetic codes, and describes the numerical methods and analysis. Part 2 explores the mathematics and physics behind the algorithms used in Part 1. In Part 3, the authors address some of the more complicated simulations in two and three dimensions. The book introduces projects to encourage practical work Readers can download plasma modeling and simulation software — the ES1 program — with implementations for PCs and Unix systems along with the original FORTRAN source code. Now available in paperback, Plasma Physics via Computer Simulation is an ideal complement to plasma physics courses and for self-study.