Electromagnetic Theory and Applications

Electromagnetic Theory and Applications PDF

Author: Ajay K. Saxena

Publisher: Alpha Science International, Limited

Published: 2009

Total Pages: 292

ISBN-13:

DOWNLOAD EBOOK →

Electromagnetic Theory and Applications aims to serve as a textbook for Physics and Engineering Students. The book covers vector algebra, electrostatics, electric field in dielectrics, boundary value problems, magnetostatics, maxwell equations and wave propagation, waves at an interface, transmission lines and wave guides, retarded potentials and radiating systems.

Electromagnetics for Engineers

Electromagnetics for Engineers PDF

Author: Clayton R. Paul

Publisher:

Published: 2004

Total Pages: 432

ISBN-13:

DOWNLOAD EBOOK →

This book covers the basic electromagnetic principles and laws from the standpoint of engineering applications, focusing on time-varying fields. Numerous applications of the principles and law are given for engineering applications that are primarily drawn from digital system design and electromagnetic interference (Electromagnetic Compatibility or EMC). Clock speeds of digital systems are increasingly in the GHz range as are frequencies used in modern analog communication systems. This increasing frequency content demands that more electrical engineers understand these fundamental electromagnetic principles and laws in order to design high speed and high frequency systems that will successfully operate.

Electromagnetic Theory and Plasmonics for Engineers

Electromagnetic Theory and Plasmonics for Engineers PDF

Author: Liudmila Nickelson

Publisher: Springer

Published: 2018-11-24

Total Pages: 749

ISBN-13: 9811323526

DOWNLOAD EBOOK →

This book presents the theory of electromagnetic (EM) waves for upper undergraduate, graduate and PhD-level students in engineering. It focuses on physics and microwave theory based on Maxwell’s equations and the boundary conditions important for studying the operation of waveguides and resonators in a wide frequency range, namely, from approx. 10**9 to 10**16 hertz. The author also highlights various current topics in EM field theory, such as plasmonic (comprising a noble metal) waveguides and analyses of attenuations by filled waveguide dielectrics or semiconductors and also by conducting waveguide walls. Featuring a wide variety of illustrations, the book presents the calculated and schematic distributions of EM fields and currents in waveguides and resonators. Further, test questions are presented at the end of each chapter.

Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields PDF

Author: Jian-Ming Jin

Publisher: John Wiley & Sons

Published: 2015-08-10

Total Pages: 744

ISBN-13: 111910808X

DOWNLOAD EBOOK →

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Modern Electromagnetic Scattering Theory with Applications

Modern Electromagnetic Scattering Theory with Applications PDF

Author: Andrey V. Osipov

Publisher: John Wiley & Sons

Published: 2017-01-31

Total Pages: 824

ISBN-13: 1119293294

DOWNLOAD EBOOK →

This self-contained book gives fundamental knowledge about scattering and diffraction of electromagnetic waves and fills the gap between general electromagnetic theory courses and collections of engineering formulas. The book is a tutorial for advanced students learning the mathematics and physics of electromagnetic scattering and curious to know how engineering concepts and techniques relate to the foundations of electromagnetics

Engineering Electromagnetics

Engineering Electromagnetics PDF

Author: Nathan Ida

Publisher: Springer

Published: 2015-03-20

Total Pages: 1062

ISBN-13: 3319078062

DOWNLOAD EBOOK →

This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students. More than 400 examples and exercises, exercising every topic in the book Includes 600 end-of-chapter problems, many of them applications or simplified applications Discusses the finite element, finite difference and method of moments in a dedicated chapter

Electromagnetic Theory and Applications for Photonic Crystals

Electromagnetic Theory and Applications for Photonic Crystals PDF

Author: Kiyotoshi Yasumoto

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 464

ISBN-13: 1420026623

DOWNLOAD EBOOK →

Photonic technology promises much faster computing, massive parallel processing, and an evolutionary step in the digital age. The search continues for devices that will enable this paradigm, and these devices will be based on photonic crystals. Modeling is a key process in developing crystals with the desired characteristics and performance, and Electromagnetic Theory and Applications for Photonic Crystals provides the electromagnetic-theoretical models that can be effectively applied to modeling photonic crystals and related optical devices. The book supplies eight self-contained chapters that detail various analytical, numerical, and computational approaches to the modeling of scattering and guiding problems. For each model, the chapter begins with a brief introduction, detailed formulations of periodic structures and photonic crystals, and practical applications to photonic crystal devices. Expert contributors discuss the scattering matrix method, multipole theory of scattering and propagation, model of layered periodic arrays for photonic crystals, the multiple multipole program, the mode-matching method for periodic metallic structures, the method of lines, the finite-difference frequency-domain technique, and the finite-difference time-domain technique. Based on original research and application efforts, Electromagnetic Theory and Applications for Photonic Crystals supplies a broad array of practical tools for analyzing and designing devices that will form the basis for a new age in computing.