Dynamic Systems And Control With Applications

Dynamic Systems And Control With Applications PDF

Author: Ahmed Nasir Uddin

Publisher: World Scientific Publishing Company

Published: 2006-08-29

Total Pages: 468

ISBN-13: 9813106824

DOWNLOAD EBOOK →

In recent years significant applications of systems and control theory have been witnessed in diversed areas such as physical sciences, social sciences, engineering, management and finance. In particular the most interesting applications have taken place in areas such as aerospace, buildings and space structure, suspension bridges, artificial heart, chemotherapy, power system, hydrodynamics and computer communication networks. There are many prominent areas of systems and control theory that include systems governed by linear and nonlinear ordinary differential equations, systems governed by partial differential equations including their stochastic counter parts and, above all, systems governed by abstract differential and functional differential equations and inclusions on Banach spaces, including their stochastic counterparts. The objective of this book is to present a small segment of theory and applications of systems and control governed by ordinary differential equations and inclusions. It is expected that any reader who has absorbed the materials presented here would have no difficulty to reach the core of current research.

Dynamic Systems Control

Dynamic Systems Control PDF

Author: Robert E. Skelton

Publisher:

Published: 1988-02-08

Total Pages: 536

ISBN-13:

DOWNLOAD EBOOK →

This text deals with matrix methods for handling, reducing, and analyzing data from a dynamic system, and covers techniques for the design of feedback controllers for those systems which can be perfectly modeled. Unlike other texts at this level, this book also provides techniques for the design of feedback controllers for those systems which cannot be perfectly modeled. In addition, presentation draws attention to the iterative nature of the control design process, and introduces model reduction and concepts of equivalent models, topics not generally covered at this level. Chapters cover mathematical preliminaries, models of dynamic systems, properties of state space realizations, controllability and observability, equivalent realizations and model reduction, stability, optimal control of time-variant systems, state estimation, and model error concepts and compensation. Extensive appendixes cover the requisite mathematics.

Estimation and Control of Dynamical Systems

Estimation and Control of Dynamical Systems PDF

Author: Alain Bensoussan

Publisher: Springer

Published: 2018-05-23

Total Pages: 547

ISBN-13: 3319754564

DOWNLOAD EBOOK →

This book provides a comprehensive presentation of classical and advanced topics in estimation and control of dynamical systems with an emphasis on stochastic control. Many aspects which are not easily found in a single text are provided, such as connections between control theory and mathematical finance, as well as differential games. The book is self-contained and prioritizes concepts rather than full rigor, targeting scientists who want to use control theory in their research in applied mathematics, engineering, economics, and management science. Examples and exercises are included throughout, which will be useful for PhD courses and graduate courses in general. Dr. Alain Bensoussan is Lars Magnus Ericsson Chair at UT Dallas and Director of the International Center for Decision and Risk Analysis which develops risk management research as it pertains to large-investment industrial projects that involve new technologies, applications and markets. He is also Chair Professor at City University Hong Kong.

Optimization and Control of Dynamic Systems

Optimization and Control of Dynamic Systems PDF

Author: Henryk Górecki

Publisher: Springer

Published: 2017-07-26

Total Pages: 666

ISBN-13: 3319626469

DOWNLOAD EBOOK →

This book offers a comprehensive presentation of optimization and polyoptimization methods. The examples included are taken from various domains: mechanics, electrical engineering, economy, informatics, and automatic control, making the book especially attractive. With the motto “from general abstraction to practical examples,” it presents the theory and applications of optimization step by step, from the function of one variable and functions of many variables with constraints, to infinite dimensional problems (calculus of variations), a continuation of which are optimization methods of dynamical systems, that is, dynamic programming and the maximum principle, and finishing with polyoptimization methods. It includes numerous practical examples, e.g., optimization of hierarchical systems, optimization of time-delay systems, rocket stabilization modeled by balancing a stick on a finger, a simplified version of the journey to the moon, optimization of hybrid systems and of the electrical long transmission line, analytical determination of extremal errors in dynamical systems of the rth order, multicriteria optimization with safety margins (the skeleton method), and ending with a dynamic model of bicycle. The book is aimed at readers who wish to study modern optimization methods, from problem formulation and proofs to practical applications illustrated by inspiring concrete examples.

Modelling and Control of Dynamic Systems Using Gaussian Process Models

Modelling and Control of Dynamic Systems Using Gaussian Process Models PDF

Author: Juš Kocijan

Publisher: Springer

Published: 2015-11-21

Total Pages: 267

ISBN-13: 3319210211

DOWNLOAD EBOOK →

This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

Feedback Control of Dynamic Systems Int

Feedback Control of Dynamic Systems Int PDF

Author: J. David Powell

Publisher: Pearson Academic Computing

Published: 2012-06

Total Pages:

ISBN-13: 9781447935377

DOWNLOAD EBOOK →

This text covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control, including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context.

Nonlinear Dynamical Systems and Control

Nonlinear Dynamical Systems and Control PDF

Author: Wassim M. Haddad

Publisher: Princeton University Press

Published: 2011-09-19

Total Pages: 975

ISBN-13: 1400841046

DOWNLOAD EBOOK →

Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.

Dynamic Systems with Time Delays: Stability and Control

Dynamic Systems with Time Delays: Stability and Control PDF

Author: Ju H. Park

Publisher: Springer Nature

Published: 2019-08-29

Total Pages: 335

ISBN-13: 9811392544

DOWNLOAD EBOOK →

This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problem Event-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.

Dynamical Systems and Control

Dynamical Systems and Control PDF

Author: Firdaus E. Udwadia

Publisher: CRC Press

Published: 2004-05-10

Total Pages: 450

ISBN-13: 0203694589

DOWNLOAD EBOOK →

The 11th International Workshop on Dynamics and Control brought together scientists and engineers from diverse fields and gave them a venue to develop a greater understanding of this discipline and how it relates to many areas in science, engineering, economics, and biology. The event gave researchers an opportunity to investigate ideas and techniq

Recent Advances in Control and Filtering of Dynamic Systems with Constrained Signals

Recent Advances in Control and Filtering of Dynamic Systems with Constrained Signals PDF

Author: Ju H. Park

Publisher: Springer

Published: 2018-08-09

Total Pages: 226

ISBN-13: 3319962027

DOWNLOAD EBOOK →

This book introduces the principle theories and applications of control and filtering problems to address emerging hot topics in feedback systems. With the development of IT technology at the core of the 4th industrial revolution, dynamic systems are becoming more sophisticated, networked, and advanced to achieve even better performance. However, this evolutionary advance in dynamic systems also leads to unavoidable constraints. In particular, such elements in control systems involve uncertainties, communication/transmission delays, external noise, sensor faults and failures, data packet dropouts, sampling and quantization errors, and switching phenomena, which have serious effects on the system’s stability and performance. This book discusses how to deal with such constraints to guarantee the system’s design objectives, focusing on real-world dynamical systems such as Markovian jump systems, networked control systems, neural networks, and complex networks, which have recently excited considerable attention. It also provides a number of practical examples to show the applicability of the presented methods and techniques. This book is of interest to graduate students, researchers and professors, as well as R&D engineers involved in control theory and applications looking to analyze dynamical systems with constraints and to synthesize various types of corresponding controllers and filters for optimal performance of feedback systems.