Dynamic Biosystem Modeling & Simulation Methodology - Integrated & Accessible

Dynamic Biosystem Modeling & Simulation Methodology - Integrated & Accessible PDF

Author: Joseph Distefano, 3rd

Publisher:

Published: 2019-09-16

Total Pages: 354

ISBN-13: 9781733495004

DOWNLOAD EBOOK →

This textbook is uniquely crafted for use in teaching undergraduate students in the life, math, computer and other sciences and engineering. It is INTRODUCTORY LEVEL, for students who have taken or are currently completing their undergraduate math requirements, and are acquiring analytical-thinking and doing skills, along with introductory biology, chemistry and physics subject matter. It's about learning HOW to model and simulate dynamic biological systems, which also makes it useful for graduate students and professional researchers who want a more rigorous treatment of introductory life science math modeling, integrated with the biology. It brings together the multidisciplinary pedagogy of these subjects into a SINGLE INTRODUCTORY MODELING METHODOLOGY COURSE, crystalizing the experience of an author who has been teaching dynamic biosystems modeling and simulation methodology for the life sciences for more than 50 years. DiStefano maximizes accessibility and "systems-math-biology" integration - without diminishing conceptual rigor. Minimally essential applied math and SYSTEMS ENGINEERING METHODS are included, along with a synopsis of the biology and physiology underlying dynamic biosystem modeling, all in a modeling pedagogy context. This textbook fills a major need in the training of contemporary biology students.Dynamic biosystems modeling methodology is presented over 12 distinctive chapters, primarily with systems diagrams and simple differential equations and algebra for expressing them quantitatively, integrated with the biology. Solving and analyzing (quantifying) the biomodels are then accomplished by simulation, using a facile control system simulation language Simulink, a GUI/Matlab toolbox that emulates control systems diagramming, rather than by "coding" the model in a standard computer programming language. Students see and work with the system model - not the code - a big plus. Higher math and complex analytical solutions are avoided.Each chapter begins with a list of LEARNING GOALS, to help with both perspective for the chapter material, and retrospective, to measure learning. EXERCISES for the student at the end of each chapter are designed to test and reinforce learning. A SOLUTIONS MANUAL for chapter exercises is available to qualified instructors from the author, as are LECTURE SLIDES and LAB ASSIGNMENTS AND SOLUTIONS, for courses that adopt the textbook for student use.

Dynamic Biosystem Modeling & Simulation Methodology - Integrated & Accessible

Dynamic Biosystem Modeling & Simulation Methodology - Integrated & Accessible PDF

Author: Joseph Distefano, 3rd

Publisher: Biomodeling

Published: 2019-09-16

Total Pages: 354

ISBN-13: 9781733495028

DOWNLOAD EBOOK →

This textbook is uniquely crafted for use in teaching undergraduate students in the life, math, computer and other sciences and engineering. It is INTRODUCTORY LEVEL, for students who have taken or are currently completing their undergraduate math requirements, and are acquiring analytical-thinking and doing skills, along with introductory biology, chemistry and physics subject matter. It's about learning HOW to model and simulate dynamic biological systems, which also makes it useful for graduate students and professional researchers who want a more rigorous treatment of introductory life science math modeling, integrated with the biology. It brings together the multidisciplinary pedagogy of these subjects into a SINGLE INTRODUCTORY MODELING METHODOLOGY COURSE, crystalizing the experience of an author who has been teaching dynamic biosystems modeling and simulation methodology for the life sciences for more than 50 years. DiStefano maximizes accessibility and "systems-math-biology" integration - without diminishing conceptual rigor. Minimally essential applied math and SYSTEMS ENGINEERING METHODS are included, along with a synopsis of the biology and physiology underlying dynamic biosystem modeling, all in a modeling pedagogy context. This textbook fills a major need in the training of contemporary biology students.Dynamic biosystems modeling methodology is presented over 12 distinctive chapters, primarily with systems diagrams and simple differential equations and algebra for expressing them quantitatively, integrated with the biology. Solving and analyzing (quantifying) the biomodels are then accomplished by simulation, using a facile control system simulation language Simulink, a GUI/Matlab toolbox that emulates control systems diagramming, rather than by "coding" the model in a standard computer programming language. Students see and work with the system model - not the code - a big plus. Higher math and complex analytical solutions are avoided.Each chapter begins with a list of LEARNING GOALS, to help with both perspective for the chapter material, and retrospective, to measure learning. EXERCISES for the student at the end of each chapter are designed to test and reinforce learning. A SOLUTIONS MANUAL for chapter exercises is available to qualified instructors from the author, as are LECTURE SLIDES and LAB ASSIGNMENTS AND SOLUTIONS, for courses that adopt the textbook for student use.

Dynamic Systems Biology Modeling and Simulation

Dynamic Systems Biology Modeling and Simulation PDF

Author: Joseph DiStefano III

Publisher: Academic Press

Published: 2015-01-10

Total Pages: 884

ISBN-13: 0124104932

DOWNLOAD EBOOK →

Dynamic Systems Biology Modeling and Simuation consolidates and unifies classical and contemporary multiscale methodologies for mathematical modeling and computer simulation of dynamic biological systems – from molecular/cellular, organ-system, on up to population levels. The book pedagogy is developed as a well-annotated, systematic tutorial – with clearly spelled-out and unified nomenclature – derived from the author’s own modeling efforts, publications and teaching over half a century. Ambiguities in some concepts and tools are clarified and others are rendered more accessible and practical. The latter include novel qualitative theory and methodologies for recognizing dynamical signatures in data using structural (multicompartmental and network) models and graph theory; and analyzing structural and measurement (data) models for quantification feasibility. The level is basic-to-intermediate, with much emphasis on biomodeling from real biodata, for use in real applications. Introductory coverage of core mathematical concepts such as linear and nonlinear differential and difference equations, Laplace transforms, linear algebra, probability, statistics and stochastics topics; PLUS ....... The pertinent biology, biochemistry, biophysics or pharmacology for modeling are provided, to support understanding the amalgam of “math modeling” with life sciences. Strong emphasis on quantifying as well as building and analyzing biomodels: includes methodology and computational tools for parameter identifiability and sensitivity analysis; parameter estimation from real data; model distinguishability and simplification; and practical bioexperiment design and optimization. Companion website provides solutions and program code for examples and exercises using Matlab, Simulink, VisSim, SimBiology, SAAMII, AMIGO, Copasi and SBML-coded models. A full set of PowerPoint slides are available from the author for teaching from his textbook. He uses them to teach a 10 week quarter upper division course at UCLA, which meets twice a week, so there are 20 lectures. They can easily be augmented or stretched for a 15 week semester course. Importantly, the slides are editable, so they can be readily adapted to a lecturer’s personal style and course content needs. The lectures are based on excerpts from 12 of the first 13 chapters of DSBMS. They are designed to highlight the key course material, as a study guide and structure for students following the full text content. The complete PowerPoint slide package (~25 MB) can be obtained by instructors (or prospective instructors) by emailing the author directly, at: [email protected]

Systems Biology: Simulation of Dynamic Network States

Systems Biology: Simulation of Dynamic Network States PDF

Author: Bernhard Ø. Palsson

Publisher: Cambridge University Press

Published: 2011-05-26

Total Pages: 332

ISBN-13: 9781107001596

DOWNLOAD EBOOK →

Biophysical models have been used in biology for decades, but they have been limited in scope and size. In this book, Bernhard Ø. Palsson shows how network reconstructions that are based on genomic and bibliomic data, and take the form of established stoichiometric matrices, can be converted into dynamic models using metabolomic and fluxomic data. The Mass Action Stoichiometric Simulation (MASS) procedure can be used for any cellular process for which data is available and allows a scalable step-by-step approach to the practical construction of network models. Specifically, it can treat integrated processes that need explicit accounting of small molecules and protein, which allows simulation at the molecular level. The material has been class-tested by the author at both the undergraduate and graduate level. All computations in the text are available online in MATLAB and MATHEMATICA® workbooks, allowing hands-on practice with the material.

Biological Modeling and Simulation

Biological Modeling and Simulation PDF

Author: Russell Schwartz

Publisher: MIT Press

Published: 2008-07-25

Total Pages: 403

ISBN-13: 0262195844

DOWNLOAD EBOOK →

A practice-oriented survey of techniques for computational modeling and simulation suitable for a broad range of biological problems. There are many excellent computational biology resources now available for learning about methods that have been developed to address specific biological systems, but comparatively little attention has been paid to training aspiring computational biologists to handle new and unanticipated problems. This text is intended to fill that gap by teaching students how to reason about developing formal mathematical models of biological systems that are amenable to computational analysis. It collects in one place a selection of broadly useful models, algorithms, and theoretical analysis tools normally found scattered among many other disciplines. It thereby gives the aspiring student a bag of tricks that will serve him or her well in modeling problems drawn from numerous subfields of biology. These techniques are taught from the perspective of what the practitioner needs to know to use them effectively, supplemented with references for further reading on more advanced use of each method covered. The text, which grew out of a class taught at Carnegie Mellon University, covers models for optimization, simulation and sampling, and parameter tuning. These topics provide a general framework for learning how to formulate mathematical models of biological systems, what techniques are available to work with these models, and how to fit the models to particular systems. Their application is illustrated by many examples drawn from a variety of biological disciplines and several extended case studies that show how the methods described have been applied to real problems in biology.

Modeling Dynamic Biological Systems

Modeling Dynamic Biological Systems PDF

Author: Bruce Hannon

Publisher: Springer

Published: 2014-07-05

Total Pages: 419

ISBN-13: 3319056158

DOWNLOAD EBOOK →

Many biologists and ecologists have developed models that find widespread use in theoretical investigations and in applications to organism behavior, disease control, population and metapopulation theory, ecosystem dynamics, and environmental management. This book captures and extends the process of model development by concentrating on the dynamic aspects of these processes and by providing the tools such that virtually anyone with basic knowledge in the Life Sciences can develop meaningful dynamic models. Examples of the systems modeled in the book range from models of cell development, the beating heart, the growth and spread of insects, spatial competition and extinction, to the spread and control of epidemics, including the conditions for the development of chaos. Key features: - easy-to-learn and easy-to-use software - examples from many subdisciplines of biology, covering models of cells, organisms, populations, and metapopulations - no prior computer or programming experience required Key benefits: - learn how to develop modeling skills and system thinking on your own rather than use models developed by others - be able to easily run models under alternative assumptions and investigate the implications of these assumptions for the dynamics of the biological system being modeled - develop skills to assess the dynamics of biological systems

Systems Biology: Simulation of Dynamic Network States

Systems Biology: Simulation of Dynamic Network States PDF

Author: Bernhard Ø. Palsson

Publisher: Cambridge University Press

Published: 2011-05-26

Total Pages: 333

ISBN-13: 1139495429

DOWNLOAD EBOOK →

Biophysical models have been used in biology for decades, but they have been limited in scope and size. In this book, Bernhard Ø. Palsson shows how network reconstructions that are based on genomic and bibliomic data, and take the form of established stoichiometric matrices, can be converted into dynamic models using metabolomic and fluxomic data. The Mass Action Stoichiometric Simulation (MASS) procedure can be used for any cellular process for which data is available and allows a scalable step-by-step approach to the practical construction of network models. Specifically, it can treat integrated processes that need explicit accounting of small molecules and protein, which allows simulation at the molecular level. The material has been class-tested by the author at both the undergraduate and graduate level. All computations in the text are available online in MATLAB® and Mathematica® workbooks, allowing hands-on practice with the material.

Stochastic Modelling for Systems Biology, Second Edition

Stochastic Modelling for Systems Biology, Second Edition PDF

Author: Darren J. Wilkinson

Publisher: CRC Press

Published: 2011-11-09

Total Pages: 365

ISBN-13: 1439837724

DOWNLOAD EBOOK →

Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.

Process Integration in Biochemical Engineering

Process Integration in Biochemical Engineering PDF

Author: Urs von Stockar

Publisher: Springer

Published: 2003-04-10

Total Pages: 207

ISBN-13: 3540367829

DOWNLOAD EBOOK →

Process integration has been one of the most active research fields in Biochemical Engineering over the last decade and it will continue to be so if bioprocessing is to become more rational, efficient and productive. This volume outlines what has been achieved in recent years. Written by experts who have made important contributions to the European Science, Foundation Program on Process Integration in Biochemical Engineering, the volume focuses on the progress made and the major opportunities, and in addition on the limitations and the challenges in bioprocess integration that lie ahead. The concept of bioprocess integration is treated at various levels, including integration at the molecular, biological, bioreactor and plant levels, but also accounting for the integration of separation and mass transfer operations and biology, fluid dynamics and physiology, as well as basic science and process technology.

Computer Simulation Validation

Computer Simulation Validation PDF

Author: Claus Beisbart

Publisher: Springer

Published: 2019-04-09

Total Pages: 1074

ISBN-13: 3319707663

DOWNLOAD EBOOK →

This unique volume introduces and discusses the methods of validating computer simulations in scientific research. The core concepts, strategies, and techniques of validation are explained by an international team of pre-eminent authorities, drawing on expertise from various fields ranging from engineering and the physical sciences to the social sciences and history. The work also offers new and original philosophical perspectives on the validation of simulations. Topics and features: introduces the fundamental concepts and principles related to the validation of computer simulations, and examines philosophical frameworks for thinking about validation; provides an overview of the various strategies and techniques available for validating simulations, as well as the preparatory steps that have to be taken prior to validation; describes commonly used reference points and mathematical frameworks applicable to simulation validation; reviews the legal prescriptions, and the administrative and procedural activities related to simulation validation; presents examples of best practice that demonstrate how methods of validation are applied in various disciplines and with different types of simulation models; covers important practical challenges faced by simulation scientists when applying validation methods and techniques; offers a selection of general philosophical reflections that explore the significance of validation from a broader perspective. This truly interdisciplinary handbook will appeal to a broad audience, from professional scientists spanning all natural and social sciences, to young scholars new to research with computer simulations. Philosophers of science, and methodologists seeking to increase their understanding of simulation validation, will also find much to benefit from in the text.