Dynamics of Exothermicity

Dynamics of Exothermicity PDF

Author: Brian Bowen

Publisher: CRC Press

Published: 1996-09-15

Total Pages: 410

ISBN-13: 9782884491709

DOWNLOAD EBOOK →

Covering the dynamics of reactive systems and of explosions, the 15 papers discuss the treatment of turbulent mixing in reactive systems, acoustic interactions with combustion fields, liquid atomization, soot formation, practical applications of combustion in waste incineration and pulse jet ignition in internal combustion engines, detonations phenomena, and mixing effects in explosions. Includes six color plates. No index. Annotation copyrighted by Book News, Inc., Portland, OR

Unsteady Combustor Physics

Unsteady Combustor Physics PDF

Author: Tim C. Lieuwen

Publisher: Cambridge University Press

Published: 2012-08-27

Total Pages: 427

ISBN-13: 1139576836

DOWNLOAD EBOOK →

Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.

Dynamics of Combustion Systems

Dynamics of Combustion Systems PDF

Author: A. K. Oppenheim

Publisher: Springer Science & Business Media

Published: 2008-08-29

Total Pages: 374

ISBN-13: 3540773649

DOWNLOAD EBOOK →

The Dynamics of Combustion Systems are presented in three parts in this book. Together they provide a step towards the automatic control of explosions. The exothermic character of combustion systems, their fluid dynamic features, and explosive nature, are covered by this work which also provides a technical monograph for readers with some background in combustion technology. The book is likely to appeal to graduate students, and researchers in academia and industry.

Computational Fluid Dynamics and Reacting Gas Flows

Computational Fluid Dynamics and Reacting Gas Flows PDF

Author: Bjorn Engquist

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 351

ISBN-13: 146123882X

DOWNLOAD EBOOK →

This IMA Volume in Mathematics and its Applications COMPUTATIONAL FLUID DYNAMICS AND REACTING GAS FLOWS is in part the proceedings of a workshop which was an integral part of the 1986-87 IMA program on SCIENTIFIC COMPUTATION. We are grateful to the Scientific Committee: Bjorn Engquist (Chairman), Roland Glowinski, Mitchell Luskin and Andrew Majda for planning and implementing an exciting and stimulating year-long program. We especially thank the Workshop Organizers, Bjorn Engquist, Mitchell Luskin and Andrew Majda, for organizing a workshop which brought together many of the leading researchers in the area of computational fluid dynamics. George R. Sell Hans Weinberger PREFACE Computational fluid dynamics has always been of central importance in scientific computing. It is also a field which clearly displays the essential theme of interaction between mathematics, physics, and computer science. Therefore, it was natural for the first workshop of the 1986- 87 program on scientific computing at the Institute for Mathematics and Its Applications to concentrate on computational fluid dynamics. In the workshop, more traditional fields were mixed with fields of emerging importance such as reacting gas flows and non-Newtonian flows. The workshop was marked by a high level of interaction and discussion among researchers representing varied "schools of thought" and countries.

Turbulent Combustion Modeling

Turbulent Combustion Modeling PDF

Author: Tarek Echekki

Publisher: Springer Science & Business Media

Published: 2010-12-25

Total Pages: 496

ISBN-13: 9400704127

DOWNLOAD EBOOK →

Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Coarse Grained Simulation and Turbulent Mixing

Coarse Grained Simulation and Turbulent Mixing PDF

Author: Fenando F. Grinstein

Publisher: Cambridge University Press

Published: 2016-06-30

Total Pages: 481

ISBN-13: 1107137047

DOWNLOAD EBOOK →

Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.