Advances in Rice Research for Abiotic Stress Tolerance

Advances in Rice Research for Abiotic Stress Tolerance PDF

Author: Mirza Hasanuzzaman

Publisher: Woodhead Publishing

Published: 2018-11-12

Total Pages: 986

ISBN-13: 0128143339

DOWNLOAD EBOOK →

Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world’s population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses Provides practical insights into a wide range of management and crop improvement practices Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology

Breeding Rice for Drought-prone Environments

Breeding Rice for Drought-prone Environments PDF

Author: K. S. Fischer

Publisher: Int. Rice Res. Inst.

Published: 2003

Total Pages: 106

ISBN-13: 9712201899

DOWNLOAD EBOOK →

Information available for other cereals and the limited or circumstantial evidence available for rice indicate that we can now breed varieties that have improved yield under drought and produce high yields in the good seasons. This manual aims to help plant breeders develop such varieties.

Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality

Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality PDF

Author: Mohammad Anwar Hossain

Publisher: John Wiley & Sons

Published: 2021-03-22

Total Pages: 484

ISBN-13: 1119633117

DOWNLOAD EBOOK →

Presents the latest knowledge of improving the stress tolerance, yield, and quality of rice crops One of the most important cereal crops, rice provides food to more than half of the world population. Various abiotic stresses—currently impacting an estimated 60% of crop yields—are projected to increase in severity and frequency due to climate change. In light of the threat of global food grain insecurity, interest in molecular rice breeding has intensified in recent years. Progress has been made, but there remains an urgent need to develop stress-tolerant, bio-fortified rice varieties that provide consistent and high-quality yields under both stress and non-stress conditions. Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is the first book to provide comprehensive and up-to-date coverage of this critical topic, containing the physiological, biochemical, and molecular information required to develop effective engineering strategies for enhancing rice yield. Authoritative and in-depth chapters examine the molecular and genetic bases of abiotic stress tolerance, discuss yield and quality improvement of rice, and explore new approaches to better utilize natural resources through modern breeding. Topics Include rice adaptation to climate change, enriching rice yields under low phosphorus and light intensity, increasing iron, zinc, vitamin and antioxidant content, and improving tolerance to salinity, drought, heat, cold, submergence, heavy metals and Ultraviolet-B radiation. This important resource: Contains the latest scientific information on a wide range of topics central to molecular breeding for rice Provides timely coverage molecular breeding for improving abiotic stress tolerance, bioavailability of essential micronutrients, and crop productivity through biotechnological methods Features detailed chapters written by internationally-recognized experts in the field Discusses recent progress and future directions in molecular breeding strategies and research Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality is required reading for rice researchers, agriculturists, and agribusiness professionals, and the ideal text for instructors and students in molecular plant breeding, abiotic stress tolerance, environmental science, and plant physiology, biochemistry, molecular biology, and biotechnology.

Drought Frontiers in Rice: Crop Improvement for Increased Rainfed Production

Drought Frontiers in Rice: Crop Improvement for Increased Rainfed Production PDF

Author:

Publisher: Int. Rice Res. Inst.

Published: 2008

Total Pages: 80

ISBN-13: 9712202372

DOWNLOAD EBOOK →

Rice drought-prone environments and coping strategies. Recent progress in breeding and genetics of drought resistance. Physiological and molecular mechanisms of drought resistance. Management of rainfed rice systems. Genes and genomics for drought-resistant rice. Conclusions and recommendations.

Plant Responses to Drought Stress

Plant Responses to Drought Stress PDF

Author: Ricardo Aroca

Publisher: Springer Science & Business Media

Published: 2012-10-12

Total Pages: 460

ISBN-13: 3642326536

DOWNLOAD EBOOK →

This book provides a comprehensive overview of the multiple strategies that plants have developed to cope with drought, one of the most severe environmental stresses. Experts in the field present 17 chapters, each of which focuses on a basic concept as well as the latest findings. The following major aspects are covered in the book: · Morphological and anatomical adaptations · Physiological responses · Biochemical and molecular responses · Ecophysiological responses · Responses to drought under field conditions The contributions will serve as an invaluable source of information for researchers and advanced students in the fields of plant sciences, agriculture, ecophysiology, biochemistry and molecular biology.