Drag Reduction of Complex Mixtures

Drag Reduction of Complex Mixtures PDF

Author: Keizo Watanabe

Publisher: Academic Press

Published: 2018-06-15

Total Pages: 222

ISBN-13: 0128099429

DOWNLOAD EBOOK →

Drag Reduction of Complex Mixtures discusses the concept of drag reduction phenomena in complex mixtures in internal and external flows that are shown experimentally by dividing flow patterns into three categories. The book is intended to support further experiments or analysis in drag reduction. As accurately modeling flow behavior with drag reduction is always complex, and since drag reducing additives or solid particles are mixed in fluids, this book covers these complex phenomena in a concise, but comprehensive manner. Comprehensively addresses a range of drag reduction themes involving different kinds of complex mixtures Provides data to support further experimentation and computer modeling of drag in complex flow Includes an introduction to the nature and characteristics of different kinds of complex mixtures

Turbulent Drag Reduction by Surfactant Additives

Turbulent Drag Reduction by Surfactant Additives PDF

Author: Feng-Chen Li

Publisher: John Wiley & Sons

Published: 2012-01-10

Total Pages: 233

ISBN-13: 1118181115

DOWNLOAD EBOOK →

Turbulent drag reduction by additives has long been a hot research topic. This phenomenon is inherently associated with multifold expertise. Solutions of drag-reducing additives are usually viscoelastic fluids having complicated rheological properties. Exploring the characteristics of drag-reduced turbulent flows calls for uniquely designed experimental and numerical simulation techniques and elaborate theoretical considerations. Pertinently understanding the turbulent drag reduction mechanism necessities mastering the fundamentals of turbulence and establishing a proper relationship between turbulence and the rheological properties induced by additives. Promoting the applications of the drag reduction phenomenon requires the knowledge from different fields such as chemical engineering, mechanical engineering, municipal engineering, and so on. This book gives a thorough elucidation of the turbulence characteristics and rheological behaviors, theories, special techniques and application issues for drag-reducing flows by surfactant additives based on the state-of-the-art of scientific research results through the latest experimental studies, numerical simulations and theoretical analyses. Covers turbulent drag reduction, heat transfer reduction, complex rheology and the real-world applications of drag reduction Introduces advanced testing techniques, such as PIV, LDA, and their applications in current experiments, illustrated with multiple diagrams and equations Real-world examples of the topic’s increasingly important industrial applications enable readers to implement cost- and energy-saving measures Explains the tools before presenting the research results, to give readers coverage of the subject from both theoretical and experimental viewpoints Consolidates interdisciplinary information on turbulent drag reduction by additives Turbulent Drag Reduction by Surfactant Additives is geared for researchers, graduate students, and engineers in the fields of Fluid Mechanics, Mechanical Engineering, Turbulence, Chemical Engineering, Municipal Engineering. Researchers and practitioners involved in the fields of Flow Control, Chemistry, Computational Fluid Dynamics, Experimental Fluid Dynamics, and Rheology will also find this book to be a much-needed reference on the topic.

Rheology of Drag Reducing Fluids

Rheology of Drag Reducing Fluids PDF

Author: Aroon Shenoy

Publisher: Springer Nature

Published: 2020-03-25

Total Pages: 196

ISBN-13: 303040045X

DOWNLOAD EBOOK →

​This book explains theoretical derivations and presents expressions for fluid and convective turbulent flow of mildly elastic fluids in various internal and external flow situations involving different types of geometries, such as the smooth/rough circular pipes, annular ducts, curved tubes, vertical flat plates, and channels. Understanding the methodology of the analyses facilitates appreciation for the rationale used for deriving expressions of parameters relevant to the turbulent flow of mildly elastic fluids. This knowledge serves as a driving force for developing new ideas, investigating new situations, and extending theoretical analyses to other unexplored areas of the rheology of mildly elastic drag reducing fluids.The book suits a range of functions--it can be used to teach elective upper-level undergraduate or graduate courses for chemical engineers, material scientists, mechanical engineers, and polymer scientists; guide researchers unexposed to this alluring and interesting area of drag reduction; and serve as a reference to all who want to explore and expand the areas dealt with in this book.

Advanced Manufacturing Processes

Advanced Manufacturing Processes PDF

Author: Volodymyr Tonkonogyi

Publisher: Springer Nature

Published: 2020-03-27

Total Pages: 643

ISBN-13: 3030407241

DOWNLOAD EBOOK →

This book offers a timely yet comprehensive snapshot of innovative research and developments in the area of manufacturing. It covers a wide range of manufacturing processes, such as cutting, coatings, and grinding, highlighting the advantages provided by the use of new materials and composites, as well as new methods and technologies. It discusses topics in energy generation and pollution prevention. It shows how computational methods and mathematical models have been applied to solve a number of issues in both theoretical and applied research. Based on selected papers presented at the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), held in Odessa, Ukraine on September 10-13, 2019, this book offers a timely overview and extensive information on trends and technologies in the area of manufacturing, mechanical and materials engineering. It is also intended to facilitate communication and collaboration between different groups working on similar topics, and to offer a bridge between academic and industrial researchers.