Discrete-time Sliding Mode Control

Discrete-time Sliding Mode Control PDF

Author: B. Bandyopadhyay

Publisher: Springer Science & Business Media

Published: 2005-10-17

Total Pages: 174

ISBN-13: 9783540281405

DOWNLOAD EBOOK →

Sliding mode control is a simple and yet robust control technique, where the system states are made to confine to a selected subset. With the increasing use of computers and discrete-time samplers in controller implementation in the recent past, discrete-time systems and computer based control have become important topics. This monograph presents an output feedback sliding mode control philosophy which can be applied to almost all controllable and observable systems, while at the same time being simple enough as not to tax the computer too much. It is shown that the solution can be found in the synergy of the multirate output sampling concept and the concept of discrete-time sliding mode control.

Advances in Discrete-Time Sliding Mode Control

Advances in Discrete-Time Sliding Mode Control PDF

Author: Ahmadreza Argha

Publisher: CRC Press

Published: 2018-06-14

Total Pages: 348

ISBN-13: 1351470477

DOWNLOAD EBOOK →

The focus of this book is on the design of a specific control strategy using digital computers. This control strategy referred to as Sliding Mode Control (SMC), has its roots in (continuous-time) relay control. This book aims to explain recent investigations' output in the field of discrete-time sliding mode control (DSMC). The book starts by explaining a new robust LMI-based (state-feedback and observer-based output-feedback) DSMC including a new scheme for sparsely distributed control. It includes a novel event-driven control mechanism, called actuator-based event-driven scheme, using a synchronized-rate biofeedback system for heart rate regulation during cycle-ergometer. Key Features: Focuses on LMI-based SMC (sliding mode control) for uncertain discrete-time system using novel nonlinear components in the control law Makes reader understand the techniques of designing a discrete controller based on the flexible sliding functions Proposes new algorithms for sparsifying control and observer network through multi-objective optimization frameworks Discusses a framework for the design of SMC for two-dimensional systems along with analyzing the controllability of two-dimensional systems Discusses novel schemes for sparsifying the control network

Discrete-Time Higher Order Sliding Mode

Discrete-Time Higher Order Sliding Mode PDF

Author: Nalin Kumar Sharma

Publisher: Springer

Published: 2018-09-10

Total Pages: 96

ISBN-13: 3030001725

DOWNLOAD EBOOK →

This monograph investigates the existence of higher order sliding mode in discrete-time systems and propounds a new concept of discrete-time higher order sliding mode. The authors propose a definition of discrete-time higher order sliding mode and a control law is designed by means of a concept for an uncertain linear-time invariant system, as well as the behavior of the closed-loop system is analyzed. Moreover, the book includes a thorough treatment of the probabilistic and non-deterministic case, i.e. stochastic discrete-time higher order sliding mode. The target audience primarily comprises research experts in control theory but the book may also be beneficial for graduate students alike.

Advances in Discrete-Time Sliding Mode Control

Advances in Discrete-Time Sliding Mode Control PDF

Author: Ahmadreza Argha

Publisher: CRC Press

Published: 2018-06-14

Total Pages: 228

ISBN-13: 1351470485

DOWNLOAD EBOOK →

The focus of this book is on the design of a specific control strategy using digital computers. This control strategy referred to as Sliding Mode Control (SMC), has its roots in (continuous-time) relay control. This book aims to explain recent investigations' output in the field of discrete-time sliding mode control (DSMC). The book starts by explaining a new robust LMI-based (state-feedback and observer-based output-feedback) DSMC including a new scheme for sparsely distributed control. It includes a novel event-driven control mechanism, called actuator-based event-driven scheme, using a synchronized-rate biofeedback system for heart rate regulation during cycle-ergometer. Key Features: Focuses on LMI-based SMC (sliding mode control) for uncertain discrete-time system using novel nonlinear components in the control law Makes reader understand the techniques of designing a discrete controller based on the flexible sliding functions Proposes new algorithms for sparsifying control and observer network through multi-objective optimization frameworks Discusses a framework for the design of SMC for two-dimensional systems along with analyzing the controllability of two-dimensional systems Discusses novel schemes for sparsifying the control network

Trends in Advanced Intelligent Control, Optimization and Automation

Trends in Advanced Intelligent Control, Optimization and Automation PDF

Author: Wojciech Mitkowski

Publisher: Springer

Published: 2017-06-06

Total Pages: 883

ISBN-13: 3319606999

DOWNLOAD EBOOK →

This volume contains the proceedings of the KKA 2017 – the 19th Polish Control Conference, organized by the Department of Automatics and Biomedical Engineering, AGH University of Science and Technology in Kraków, Poland on June 18–21, 2017, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences, and the Commission for Engineering Sciences of the Polish Academy of Arts and Sciences. Part 1 deals with general issues of modeling and control, notably flow modeling and control, sliding mode, predictive, dual, etc. control. In turn, Part 2 focuses on optimization, estimation and prediction for control. Part 3 is concerned with autonomous vehicles, while Part 4 addresses applications. Part 5 discusses computer methods in control, and Part 6 examines fractional order calculus in the modeling and control of dynamic systems. Part 7 focuses on modern robotics. Part 8 deals with modeling and identification, while Part 9 deals with problems related to security, fault detection and diagnostics. Part 10 explores intelligent systems in automatic control, and Part 11 discusses the use of control tools and techniques in biomedical engineering. Lastly, Part 12 considers engineering education and teaching with regard to automatic control and robotics.

Discrete-Time Stochastic Sliding Mode Control Using Functional Observation

Discrete-Time Stochastic Sliding Mode Control Using Functional Observation PDF

Author: Satnesh Singh

Publisher: Springer Nature

Published: 2019-11-25

Total Pages: 129

ISBN-13: 3030328007

DOWNLOAD EBOOK →

This book extrapolates many of the concepts that are well defined for discrete-time deterministic sliding-mode control for use with discrete-time stochastic systems. It details sliding-function designs for various categories of linear time-invariant systems and its application for control. The resulting sliding-mode control addresses robustness issues and the functional-observer approach reduces the observer order substantially. Sliding-mode control (SMC) is designed for discrete-time stochastic systems, extended so that states lie within a specified band, and able to deal with incomplete information. Functional-observer-based SMC is designed for various clauses of stochastic systems: discrete-time; discrete-time with delay; state time-delayed; and those with parametric uncertainty. Stability considerations arising because of parametric uncertainty are taken into account and, where necessary, the effects of unmatched uncertainties mitigated. A simulation example is used to explain the use of the functional-observer approach to SMC design. Discrete-Time Stochastic Sliding-Mode Control Using Functional Observation will interest all researchers working in sliding-mode control and will be of particular assistance to graduate students in understanding the changes in design philosophy that arise when changing from continuous- to discrete-time systems. It helps to pave the way for further progress in applications of discrete-time SMC.

Advanced Sliding Mode Control for Mechanical Systems

Advanced Sliding Mode Control for Mechanical Systems PDF

Author: Jinkun Liu

Publisher: Springer Science & Business Media

Published: 2012-09-07

Total Pages: 367

ISBN-13: 3642209076

DOWNLOAD EBOOK →

"Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation" takes readers through the basic concepts, covering the most recent research in sliding mode control. The book is written from the perspective of practical engineering and examines numerous classical sliding mode controllers, including continuous time sliding mode control, discrete time sliding mode control, fuzzy sliding mode control, neural sliding mode control, backstepping sliding mode control, dynamic sliding mode control, sliding mode control based on observer, terminal sliding mode control, sliding mode control for robot manipulators, and sliding mode control for aircraft. This book is intended for engineers and researchers working in the field of control. Dr. Jinkun Liu works at Beijing University of Aeronautics and Astronautics and Dr. Xinhua Wang works at the National University of Singapore.

Discrete-time Sliding Mode Control

Discrete-time Sliding Mode Control PDF

Author: B. Bandyopadhyay

Publisher: Springer

Published: 2009-09-02

Total Pages: 150

ISBN-13: 9783540813873

DOWNLOAD EBOOK →

Sliding mode control is a simple and yet robust control technique, where the system states are made to confine to a selected subset. With the increasing use of computers and discrete-time samplers in controller implementation in the recent past, discrete-time systems and computer based control have become important topics. This monograph presents an output feedback sliding mode control philosophy which can be applied to almost all controllable and observable systems, while at the same time being simple enough as not to tax the computer too much. It is shown that the solution can be found in the synergy of the multirate output sampling concept and the concept of discrete-time sliding mode control.

Sliding Mode Control Using Novel Sliding Surfaces

Sliding Mode Control Using Novel Sliding Surfaces PDF

Author: B. Bandyopadhyay

Publisher: Springer

Published: 2009-10-14

Total Pages: 144

ISBN-13: 3642034489

DOWNLOAD EBOOK →

AfterasurveypaperbyUtkininthelate1970s,slidingmodecontrolmeth- ologies emerged as an e?ective tool to tackle uncertainty and disturbances which are inevitable in most of the practical systems. Sliding mode control is a particular class of variable structure control which was introduced by Emel’yanov and his colleagues. The design paradigms of sliding mode c- trol has now become a mature design technique for the design of robust c- troller of uncertain system. In sliding mode technique, the state trajectory of the system is constrained on a chosen manifold (or within some neighb- hood thereof) by an appropriatecontrolaction. This manifold is also called a switching surface or a sliding surface. During sliding mode, system dynamics is governed by the chosen manifold which results in a well celebrated inva- ance property towards certain classes of disturbance and model mismatches. The purpose of this monograph is to give a di?erent dimension to sl- ing surface design to achieve high performance of the system. Design of the switching surface is vital because the closed loop dynamics is governed by the parameters of the sliding surface. Therefore sliding surface should be - signed to meet the closed loop speci?cations. Many systems demand high performance with robustness. To address this issue of achieving high perf- mance with robustness, we propose nonlinear surfaces for di?erent classes of systems. The nonlinear surface is designed such that it changes the system’s closed-loop damping ratio from its initial low value to a ?nal high value.