Discovering Wavelets

Discovering Wavelets PDF

Author: Edward Aboufadel

Publisher: John Wiley & Sons

Published: 2011-02-14

Total Pages: 142

ISBN-13: 1118031156

DOWNLOAD EBOOK →

An accessible and practical introduction to wavelets With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets to compress fingerprint images. Wavelet theory is further developed in the setting of function spaces. The book then moves on to present more advanced topics such as filters, multiresolution analysis, Daubechies' wavelets, and further applications. The book concludes with a series of projects and problems that introduce advanced topics and offer starting points for research. Sample projects that demonstrate real wavelet applications include image compression, a wavelet-based search engine, processing with Daubechies' wavelets, and more. Among the special features of Discovering Wavelets are: * Real-life, hands-on examples that involve actual wavelet applications * A companion Web site containing Pixel Images software and Maple files to be used with the projects in the book * Challenging problems that reinforce and expand on the ideas being developed * An appendix containing the linear algebra needed to understand wavelets as presented in the book

Wavelets Made Easy

Wavelets Made Easy PDF

Author: Yves Nievergelt

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 297

ISBN-13: 1461205735

DOWNLOAD EBOOK →

This book explains the nature and computation of mathematical wavelets, which provide a framework and methods for the analysis and the synthesis of signals, images, and other arrays of data. The material presented here addresses the au dience of engineers, financiers, scientists, and students looking for explanations of wavelets at the undergraduate level. It requires only a working knowledge or memories of a first course in linear algebra and calculus. The first part of the book answers the following two questions: What are wavelets? Wavelets extend Fourier analysis. How are wavelets computed? Fast transforms compute them. To show the practical significance of wavelets, the book also provides transitions into several applications: analysis (detection of crashes, edges, or other events), compression (reduction of storage), smoothing (attenuation of noise), and syn thesis (reconstruction after compression or other modification). Such applications include one-dimensional signals (sounds or other time-series), two-dimensional arrays (pictures or maps), and three-dimensional data (spatial diffusion). The ap plications demonstrated here do not constitute recipes for real implementations, but aim only at clarifying and strengthening the understanding of the mathematics of wavelets.

Discovering Wavelets

Discovering Wavelets PDF

Author: Edward Aboufadel

Publisher: Wiley-Interscience

Published: 1999-10-05

Total Pages: 154

ISBN-13:

DOWNLOAD EBOOK →

An accessible and practical introduction to wavelets With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets to compress fingerprint images. Wavelet theory is further developed in the setting of function spaces. The book then moves on to present more advanced topics such as filters, multiresolution analysis, Daubechies' wavelets, and further applications. The book concludes with a series of projects and problems that introduce advanced topics and offer starting points for research. Sample projects that demonstrate real wavelet applications include image compression, a wavelet-based search engine, processing with Daubechies' wavelets, and more. Among the special features of Discovering Wavelets are: * Real-life, hands-on examples that involve actual wavelet applications * A companion Web site containing Pixel Images software and Maple files to be used with the projects in the book * Challenging problems that reinforce and expand on the ideas being developed * An appendix containing the linear algebra needed to understand wavelets as presented in the book

A First Course on Wavelets

A First Course on Wavelets PDF

Author: Eugenio Hernandez

Publisher: CRC Press

Published: 1996-09-12

Total Pages: 518

ISBN-13: 9781420049985

DOWNLOAD EBOOK →

Wavelet theory had its origin in quantum field theory, signal analysis, and function space theory. In these areas wavelet-like algorithms replace the classical Fourier-type expansion of a function. This unique new book is an excellent introduction to the basic properties of wavelets, from background math to powerful applications. The authors provide elementary methods for constructing wavelets, and illustrate several new classes of wavelets. The text begins with a description of local sine and cosine bases that have been shown to be very effective in applications. Very little mathematical background is needed to follow this material. A complete treatment of band-limited wavelets follows. These are characterized by some elementary equations, allowing the authors to introduce many new wavelets. Next, the idea of multiresolution analysis (MRA) is developed, and the authors include simplified presentations of previous studies, particularly for compactly supported wavelets. Some of the topics treated include: Several bases generated by a single function via translations and dilations Multiresolution analysis, compactly supported wavelets, and spline wavelets Band-limited wavelets Unconditionality of wavelet bases Characterizations of many of the principal objects in the theory of wavelets, such as low-pass filters and scaling functions The authors also present the basic philosophy that all orthonormal wavelets are completely characterized by two simple equations, and that most properties and constructions of wavelets can be developed using these two equations. Material related to applications is provided, and constructions of splines wavelets are presented. Mathematicians, engineers, physicists, and anyone with a mathematical background will find this to be an important text for furthering their studies on wavelets.

Computational Signal Processing with Wavelets

Computational Signal Processing with Wavelets PDF

Author: Anthony Teolis

Publisher: Birkhäuser

Published: 2017-10-02

Total Pages: 324

ISBN-13: 331965747X

DOWNLOAD EBOOK →

This unique resource examines the conceptual, computational, and practical aspects of applied signal processing using wavelets. With this book, readers will understand and be able to use the power and utility of new wavelet methods in science and engineering problems and analysis. The text is written in a clear, accessible style avoiding unnecessary abstractions and details. From a computational perspective, wavelet signal processing algorithms are presented and applied to signal compression, noise suppression, and signal identification. Numerical illustrations of these computational techniques are further provided with interactive software (MATLAB code) that is available on the World Wide Web. Topics and Features Continuous wavelet and Gabor transforms Frame-based theory of discretization and reconstruction of analog signals is developed New and efficient "overcomplete" wavelet transform is introduced and applied Numerical illustrations with an object-oriented computational perspective using the Wavelet Signal Processing Workstation (MATLAB code) available This book is an excellent resource for information and computational tools needed to use wavelets in many types of signal processing problems. Graduates, professionals, and practitioners in engineering, computer science, geophysics, and applied mathematics will benefit from using the book and software tools. The present, softcover reprint is designed to make this classic textbook available to a wider audience. A self-contained text that is theoretically rigorous while maintaining contact with interesting applications. A particularly noteworthy topic...is a class of ‘overcomplete wavelets’. These functions are not orthonormal and they lead to many useful results. —Journal of Mathematical Psychology

Fundamentals of Wavelets

Fundamentals of Wavelets PDF

Author: Jaideva C. Goswami

Publisher: John Wiley & Sons

Published: 2011-03-08

Total Pages: 310

ISBN-13: 0470934646

DOWNLOAD EBOOK →

Most existing books on wavelets are either too mathematical or they focus on too narrow a specialty. This book provides a thorough treatment of the subject from an engineering point of view. It is a one-stop source of theory, algorithms, applications, and computer codes related to wavelets. This second edition has been updated by the addition of: a section on "Other Wavelets" that describes curvelets, ridgelets, lifting wavelets, etc a section on lifting algorithms Sections on Edge Detection and Geophysical Applications Section on Multiresolution Time Domain Method (MRTD) and on Inverse problems

A First Course in Wavelets with Fourier Analysis

A First Course in Wavelets with Fourier Analysis PDF

Author: Albert Boggess

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 248

ISBN-13: 1118211154

DOWNLOAD EBOOK →

A comprehensive, self-contained treatment of Fourier analysis and wavelets—now in a new edition Through expansive coverage and easy-to-follow explanations, A First Course in Wavelets with Fourier Analysis, Second Edition provides a self-contained mathematical treatment of Fourier analysis and wavelets, while uniquely presenting signal analysis applications and problems. Essential and fundamental ideas are presented in an effort to make the book accessible to a broad audience, and, in addition, their applications to signal processing are kept at an elementary level. The book begins with an introduction to vector spaces, inner product spaces, and other preliminary topics in analysis. Subsequent chapters feature: The development of a Fourier series, Fourier transform, and discrete Fourier analysis Improved sections devoted to continuous wavelets and two-dimensional wavelets The analysis of Haar, Shannon, and linear spline wavelets The general theory of multi-resolution analysis Updated MATLAB code and expanded applications to signal processing The construction, smoothness, and computation of Daubechies' wavelets Advanced topics such as wavelets in higher dimensions, decomposition and reconstruction, and wavelet transform Applications to signal processing are provided throughout the book, most involving the filtering and compression of signals from audio or video. Some of these applications are presented first in the context of Fourier analysis and are later explored in the chapters on wavelets. New exercises introduce additional applications, and complete proofs accompany the discussion of each presented theory. Extensive appendices outline more advanced proofs and partial solutions to exercises as well as updated MATLAB routines that supplement the presented examples. A First Course in Wavelets with Fourier Analysis, Second Edition is an excellent book for courses in mathematics and engineering at the upper-undergraduate and graduate levels. It is also a valuable resource for mathematicians, signal processing engineers, and scientists who wish to learn about wavelet theory and Fourier analysis on an elementary level.

Essential Wavelets for Statistical Applications and Data Analysis

Essential Wavelets for Statistical Applications and Data Analysis PDF

Author: Todd Ogden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 218

ISBN-13: 1461207096

DOWNLOAD EBOOK →

I once heard the book by Meyer (1993) described as a "vulgarization" of wavelets. While this is true in one sense of the word, that of making a sub ject popular (Meyer's book is one of the early works written with the non specialist in mind), the implication seems to be that such an attempt some how cheapens or coarsens the subject. I have to disagree that popularity goes hand-in-hand with debasement. is certainly a beautiful theory underlying wavelet analysis, there is While there plenty of beauty left over for the applications of wavelet methods. This book is also written for the non-specialist, and therefore its main thrust is toward wavelet applications. Enough theory is given to help the reader gain a basic understanding of how wavelets work in practice, but much of the theory can be presented using only a basic level of mathematics. Only one theorem is for mally stated in this book, with only one proof. And these are only included to introduce some key concepts in a natural way.

Elements of Wavelets for Engineers and Scientists

Elements of Wavelets for Engineers and Scientists PDF

Author: Dwight F. Mix

Publisher: John Wiley & Sons

Published: 2003-09-08

Total Pages: 252

ISBN-13: 9780471466178

DOWNLOAD EBOOK →

An indispensable guide to understanding wavelets Elements of Wavelets for Engineers and Scientists is a guide to wavelets for "the rest of us"-practicing engineers and scientists, nonmathematicians who want to understand and apply such tools as fast Fourier and wavelet transforms. It is carefully designed to help professionals in nonmathematical fields comprehend this very mathematically sophisticated topic and be prepared for further study on a more mathematically rigorous level. Detailed discussions, worked-out examples, drawings, and drill problems provide step-by-step guidance on fundamental concepts such as vector spaces, metric, norm, inner product, basis, dimension, biorthogonality, and matrices. Chapters explore . . . * Functions and transforms * The sampling theorem * Multirate processing * The fast Fourier transform * The wavelet transform * QMF filters * Practical wavelets and filters . . . as well as many new wavelet applications-image compression, turbulence, and pattern recognition, for instance-that have resulted from recent synergies in fields such as quantum physics and seismic geology. Elements of Wavelets for Engineers and Scientists is a must for every practicing engineer, scientist, computer programmer, and student needing a practical, top-to-bottom grasp of wavelets.