Traditional Functional-Discrete Methods for the Problems of Mathematical Physics

Traditional Functional-Discrete Methods for the Problems of Mathematical Physics PDF

Author: Volodymyr Makarov

Publisher: John Wiley & Sons

Published: 2024-04-02

Total Pages: 356

ISBN-13: 1786309335

DOWNLOAD EBOOK →

This book is devoted to the construction and study of approximate methods for solving mathematical physics problems in canonical domains. It focuses on obtaining weighted a priori estimates of the accuracy of these methods while also considering the influence of boundary and initial conditions. This influence is quantified by means of suitable weight functions that characterize the distance of an inner point to the boundary of the domain. New results are presented on boundary and initial effects for the finite difference method for elliptic and parabolic equations, mesh schemes for equations with fractional derivatives, and the Cayley transform method for abstract differential equations in Hilbert and Banach spaces. Due to their universality and convenient implementation, the algorithms discussed throughout can be used to solve a wide range of actual problems in science and technology. The book is intended for scientists, university teachers, and graduate and postgraduate students who specialize in the field of numerical analysis.

The Method of Summary Representation for Numerical Solution of Problems of Mathematical Physics

The Method of Summary Representation for Numerical Solution of Problems of Mathematical Physics PDF

Author: G. N. Polozhii

Publisher: Elsevier

Published: 2014-07-10

Total Pages: 305

ISBN-13: 148318546X

DOWNLOAD EBOOK →

Pure and Applied Mathematics, Volume 79: The Method of Summary Representation for Numerical Solution of Problems of Mathematical Physics presents the numerical solution of two-dimensional and three-dimensional boundary-value problems of mathematical physics. This book focuses on the second-order and fourth-order linear differential equations. Organized into two chapters, this volume begins with an overview of ordinary finite-difference equations and the general solutions of certain specific finite-difference equations. This text then examines the various methods of successive approximation that are used exclusively for solving finite-difference equations. This book discusses as well the established formula of summary representation for certain finite-difference operators that are associated with partial differential equations of mathematical physics. The final chapter deals with the formula of summary representation to enable the researcher to write the solution of the corresponding systems of linear algebraic equations in a simple form. This book is a valuable resource for mathematicians and physicists.

Theoretical and Mathematical Physics

Theoretical and Mathematical Physics PDF

Author: Steeb Willi-hans

Publisher: World Scientific

Published: 2018-08-23

Total Pages: 736

ISBN-13: 9813275391

DOWNLOAD EBOOK →

This updated and extended edition of the book combines the topics provided in the two parts of the previous editions as well as new topics. It is a comprehensive compilation covering most areas in mathematical and theoretical physics. The book provides a collection of problems together with their detailed solutions which will prove to be valuable to students as well as to researchers in the fields of mathematics, physics, engineering and other sciences. Each chapter provides a short introduction with the relevant definitions and notations. All relevant definitions are given. The topics range in difficulty from elementary to advanced. Almost all problems are solved in detail and most of the problems are self-contained. Stimulating supplementary problems are also provided in each chapter. Students can learn important principles and strategies required for problem solving. Teachers will also find this text useful as a supplement, since important concepts and techniques are developed in the problems. Introductory problems for both undergraduate and advanced undergraduate students are provided. More advanced problems together with their detailed solutions are collected, to meet the needs of graduate students and researchers. Problems included cover new fields in theoretical and mathematical physics such as tensor product, Lax representation, Bäcklund transformation, soliton equations, Hilbert space theory, uncertainty relation, entanglement, spin systems, Lie groups, Bose system, Fermi systems differential forms, Lie algebra valued differential forms, metric tensor fields, Hirota technique, Painlevé test, Bethe ansatz, Yang-Baxter relation, wavelets, gauge theory, differential geometry, string theory, chaos, fractals, complexity, ergodic theory, etc. A number of software implementations are also provided.

Methods for Solving Mathematical Physics Problems

Methods for Solving Mathematical Physics Problems PDF

Author: Valeriĭ Ivanovich Agoshkov

Publisher: Cambridge Int Science Publishing

Published: 2006

Total Pages: 335

ISBN-13: 1904602053

DOWNLOAD EBOOK →

The aim of the book is to present to a wide range of readers (students, postgraduates, scientists, engineers, etc.) basic information on one of the directions of mathematics, methods for solving mathematical physics problems. The authors have tried to select for the book methods that have become classical and generally accepted. However, some of the current versions of these methods may be missing from the book because they require special knowledge. The book is of the handbook-teaching type. On the one hand, the book describes the main definitions, the concepts of the examined methods and approaches used in them, and also the results and claims obtained in every specific case. On the other hand, proofs of the majority of these results are not presented and they are given only in the simplest (methodological) cases. Another special feature of the book is the inclusion of many examples of application of the methods for solving specific mathematical physics problems of applied nature used in various areas of science and social activity, such as power engineering, environmental protection, hydrodynamics, elasticity theory, etc. This should provide additional information on possible applications of these methods. To provide complete information, the book includes a chapter dealing with the main problems of mathematical physics, together with the results obtained in functional analysis and boundary-value theory for equations with partial derivatives.

The Theory of Difference Schemes

The Theory of Difference Schemes PDF

Author: Alexander A. Samarskii

Publisher: CRC Press

Published: 2001-03-29

Total Pages: 788

ISBN-13: 0203908511

DOWNLOAD EBOOK →

The Theory of Difference Schemes emphasizes solutions to boundary value problems through multiple difference schemes. It addresses the construction of approximate numerical methods and computer algorithms for solving mathematical physics problems. The book also develops mathematical models for obtaining desired solutions in minimal time using direct or iterative difference equations. Mathematical Reviews said it is "well-written [and] an excellent book, with a wealth of mathematical material and techniques."

Differential and Difference Equations

Differential and Difference Equations PDF

Author: Leonard C. Maximon

Publisher: Springer

Published: 2016-04-18

Total Pages: 162

ISBN-13: 3319297368

DOWNLOAD EBOOK →

This book, intended for researchers and graduate students in physics, applied mathematics and engineering, presents a detailed comparison of the important methods of solution for linear differential and difference equations - variation of constants, reduction of order, Laplace transforms and generating functions - bringing out the similarities as well as the significant differences in the respective analyses. Equations of arbitrary order are studied, followed by a detailed analysis for equations of first and second order. Equations with polynomial coefficients are considered and explicit solutions for equations with linear coefficients are given, showing significant differences in the functional form of solutions of differential equations from those of difference equations. An alternative method of solution involving transformation of both the dependent and independent variables is given for both differential and difference equations. A comprehensive, detailed treatment of Green’s functions and the associated initial and boundary conditions is presented for differential and difference equations of both arbitrary and second order. A dictionary of difference equations with polynomial coefficients provides a unique compilation of second order difference equations obeyed by the special functions of mathematical physics. Appendices augmenting the text include, in particular, a proof of Cramer’s rule, a detailed consideration of the role of the superposition principal in the Green’s function, and a derivation of the inverse of Laplace transforms and generating functions of particular use in the solution of second order linear differential and difference equations with linear coefficients.