Dielectric Elastomers as Electromechanical Transducers

Dielectric Elastomers as Electromechanical Transducers PDF

Author: Federico Carpi

Publisher: Elsevier

Published: 2011-09-06

Total Pages: 344

ISBN-13: 0080557724

DOWNLOAD EBOOK →

Dielectric Elastomers as Electromechanical Transducers provides a comprehensive and updated insight into dielectric elastomers; one of the most promising classes of polymer-based smart materials and technologies. This technology can be used in a very broad range of applications, from robotics and automation to the biomedical field. The need for improved transducer performance has resulted in considerable efforts towards the development of devices relying on materials with intrinsic transduction properties. These materials, often termed as “smart or “intelligent , include improved piezoelectrics and magnetostrictive or shape-memory materials. Emerging electromechanical transduction technologies, based on so-called ElectroActive Polymers (EAP), have gained considerable attention. EAP offer the potential for performance exceeding other smart materials, while retaining the cost and versatility inherent to polymer materials. Within the EAP family, “dielectric elastomers , are of particular interest as they show good overall performance, simplicity of structure and robustness. Dielectric elastomer transducers are rapidly emerging as high-performance “pseudo-muscular actuators, useful for different kinds of tasks. Further, in addition to actuation, dielectric elastomers have also been shown to offer unique possibilities for improved generator and sensing devices. Dielectric elastomer transduction is enabling an enormous range of new applications that were precluded to any other EAP or smart-material technology until recently. This book provides a comprehensive and updated insight into dielectric elastomer transduction, covering all its fundamental aspects. The book deals with transduction principles, basic materials properties, design of efficient device architectures, material and device modelling, along with applications. Concise and comprehensive treatment for practitioners and academics Guides the reader through the latest developments in electroactive-polymer-based technology Designed for ease of use with sections on fundamentals, materials, devices, models and applications

Electromechanical Coupling Behavior of Dielectric Elastomer Composites

Electromechanical Coupling Behavior of Dielectric Elastomer Composites PDF

Author: Ryan Steven Scurlock

Publisher:

Published: 2016

Total Pages: 92

ISBN-13:

DOWNLOAD EBOOK →

Dielectric elastomers have gained substantial interest in the past few decades under research efforts aimed to improve electromechanical transducer technology. This material is often termed a “smart material” due to its intrinsic transduction properties, allowing the elastomer to deform in response to electric stimulation. High mechanical compliance, lightweight, low cost, and the ability to achieve enormous voltage induced strains make dielectric elastomers excellent candidates to serve as electromechanical transducers, both as high efficiency actuators and energy harvesters. This work is focused on increasing the transduction efficiency of dielectric elastomers, strengthening their potential effectiveness as a transducer. To enhance the electrostriction of the material, a composite concept is introduced where rigid conducting fibrous electrodes are embedded into the dielectric. A combined theoretical and numerical modeling framework is developed to analyze the electromechanical behavior of several different composite arrangements. In order to examine the large mechanical deformations of the elastomer, a finite deformation theory is required for the description of the material behavior. To describe the material free energy, a compressible Neo-Hookean model is utilized. The finite element method is used for the numerical solution technique to the boundary value problem.

Electromechanical Coupling Behavior of Dielectric Elastomer Transducers

Electromechanical Coupling Behavior of Dielectric Elastomer Transducers PDF

Author: Jianyou Zhou

Publisher:

Published: 2015

Total Pages: 278

ISBN-13:

DOWNLOAD EBOOK →

Dielectric elastomer transducers with large deformation, high energy output, light weight and low cost have been drawing great interest from both the research and industry communities, and shown potential for versatile applications in biomimetics, dynamics, robotics and energy harvesting. However, in addition to multiple failure modes such as electrical breakdown, electromechanical instability, loss-of- tension and fatigue, the performance of dielectric elastomer transducers are also strongly influenced by the hyperelastic and viscoelastic properties of the material. Also, the interplay among these material properties and the failure modes is rather difficult to predict. Therefore, in order to provide guidelines for the optimal design of dielectric elastomer transducers, it is essential to first develop accurate and reliable models, and efficient numerical methods to investigate their performance. First, this thesis purposes a boundary- constraint method to eliminate the electromechanical instability of dielectric elastomer actuators under voltage-control loading condition and improve their actuation deformation. Second, based on the finite-deformation viscoelasticity model, the natural frequency tuning process of viscoelastic dielectric elastomer resonators is examined in this work. It is found that the tuned natural frequency is highly affected by the material viscoelasticity. Also, it is concluded that the electrical loading rate only influences the tunable frequency range and the safe operation voltage of the resonator, but not the tuned natural frequency when the applied voltage is within the safe range. Third, with the finite-deformation viscoelasticity model, the energy conversion efficiency of dielectric elastomer generators under equi-biaxial loading is also investigated in this work. Simulation results show that increasing the maximum stretch ratio and the rate of defor mation, and choosing a proper bias voltage can lead to an improvement of the energy conversion efficiency. Furthermore, the fatigue life of dielectric elastomer devices under cyclic loading is explored in this work for the first time . Simulation results have demonstrated that the energy conversion efficiency of dielectric elastomer generators is compromised by their fatigue life. To tackle the critical challenges for the development and design of dielectric elastomers transducers, this research develops theoretical models and numerical methods that are able to capture the nonlinear electromechanical coupling, the material properties, the typical failure modes and different operating conditions of dielectric elastomer transducers. With more accurate and reliable modeling methods, this work is expected to provide a comprehensive understanding on the fundamentals and technologies of dielectric elastomer transducers and trigger more innovative and optimal design of such devices.

Advances in Energy Harvesting Methods

Advances in Energy Harvesting Methods PDF

Author: Niell Elvin

Publisher: Springer Science & Business Media

Published: 2013-02-15

Total Pages: 451

ISBN-13: 146145705X

DOWNLOAD EBOOK →

Advances in Energy Harvesting Methods presents a state-of-the-art understanding of diverse aspects of energy harvesting with a focus on: broadband energy conversion, new concepts in electronic circuits, and novel materials. This book covers recent advances in energy harvesting using different transduction mechanisms; these include methods of performance enhancement using nonlinear effects, non-harmonic forms of excitation and non-resonant energy harvesting, fluidic energy harvesting, and advances in both low-power electronics as well as material science. The contributors include a brief literature review of prior research with each chapter for further reference.

Living machines

Living machines PDF

Author: Tony J. Prescott

Publisher: Oxford University Press

Published: 2018-04-19

Total Pages: 632

ISBN-13: 0191666815

DOWNLOAD EBOOK →

Contemporary research in the field of robotics attempts to harness the versatility and sustainability of living organisms. By exploiting those natural principles, scientists hope to render a renewable, adaptable, and robust class of technology that can facilitate self-repairing, social, and moral—even conscious—machines. This is the realm of robotics that scientists call "the living machine". Living Machines can be divided into two entities-biomimetic systems, those that harness the principles discovered in nature and embody them in new artifacts, and biohybrid systems, which couple biological entities with synthetic ones. Living Machines: A handbook of research in biomimetic and biohybrid systems surveys this flourishing area of research. It captures the current state of play and points to the opportunities ahead, addressing such fields as self-organization and co-operativity, biologically-inspired active materials, self-assembly and self-repair, learning, memory, control architectures and self-regulation, locomotion in air, on land or in water, perception, cognition, control, and communication. In all of these areas, the potential of biomimetics is shown through the construction of a wide range of different biomimetic devices and animal-like robots. Biohybrid systems is a relatively new field, with exciting and largely unknown potential, but one that is likely to shape the future of humanity. Chapters outline current research in areas including brain-machine interfaces-where neurons are connected to microscopic sensors and actuators-and various forms of intelligent prostheses from sensory devices like artificial retinas, to life-like artificial limbs, brain implants, and virtual reality-based rehabilitation approaches. The handbook concludes by exploring the impact living machine technology will have on both society and the individual, by forcing human beings to question how we see and understand ourselves. With contributions from leading researchers drawing on ideas from science, engineering, and the humanities, this handbook will appeal to both undergraduate and postgraduate students of biomimetic and biohybrid technologies. Researchers in the areas of computational modeling and engineering, including artificial intelligence, machine learning, artificial life, biorobotics, neurorobotics, and human-machine interfaces, will find Living Machines an invaluable resource.

Advanced Piezoelectric Materials

Advanced Piezoelectric Materials PDF

Author: Kenji Uchino

Publisher: Woodhead Publishing

Published: 2017-06-20

Total Pages: 850

ISBN-13: 0081012551

DOWNLOAD EBOOK →

Advanced Piezoelectric Materials: Science and Technology, Second Edition, provides revised, expanded, and updated content suitable for those researching piezoelectric materials or using them to develop new devices in areas such as microelectronics, optical, sound, structural, and biomedical engineering. Three new chapters cover multilayer technologies with base-metal internal electrodes, templated grain growth preparation techniques for manufacturing piezoelectric single crystals, and piezoelectric MEMS technologies. Chapters from the first edition have been revised in order to provide up-to-date, comprehensive coverage of developments in the field. Part One covers the structure and properties of a range of piezoelectric materials. Part Two details advanced manufacturing processes for particular materials and device types, including three new chapters. Finally, Part Three covers materials development for three key applications of piezoelectric materials. Dr. Kenji Uchino is a pioneer in piezoelectric actuators, Professor of Electrical Engineering at Penn State University, and Director of the International Center for Actuators and Transducers. He has authored 550 papers, 54 books and 26 patents in the ceramic actuator area. Features an overview of manufacturing methods for a wide range of piezoelectric materials Provides revised, expanded, and updated coverage compared to the first edition, including three new chapters Suitable for those researching piezoelectric materials or using them to develop new devices in areas such as microelectronics, optical, sound, structural, and biomedical engineering

Responsive Membranes and Materials

Responsive Membranes and Materials PDF

Author: D. Bhattacharyya

Publisher: John Wiley & Sons

Published: 2012-11-26

Total Pages: 465

ISBN-13: 1118389549

DOWNLOAD EBOOK →

The development of new multifunctional membranes and materials which respond to external stimuli, such as pH, temperature, light, biochemicals or magnetic or electrical signals, represents new approaches to separations, reactions, or recognitions. With multiple cooperative functions, responsive membranes and materials have applications which range from biopharmaceutical, to drug delivery systems to water treatment. This book covers recent advances in the generation and application of responsive materials and includes: Development and design of responsive membranes and materials Carbon nanotube membranes Tunable separations, reactions and nanoparticle synthesis Responsive membranes for water treatment Pore-filled membranes for drug release Biologically-inspired responsive materials and hydrogels Biomimetic polymer gels Responsive Membranes and Materials provides a cutting-edge resource for researchers and scientists in membrane science and technology, as well as specialists in separations, biomaterials, bionanotechnology, drug delivery, polymers, and functional materials.

Petroleum Engineering Explained

Petroleum Engineering Explained PDF

Author: David Shallcross

Publisher: Royal Society of Chemistry

Published: 2020-04-20

Total Pages: 358

ISBN-13: 1839161000

DOWNLOAD EBOOK →

Assuming no mathematical or chemistry knowledge, this book introduces complete beginners to the field of petroleum engineering. Written in a straightforward style, the author takes a practical approach to the subject avoiding complex mathematics to achieve a text that is robust without being intimidating. Covering traditional petroleum engineering topics, readers of this book will learn about the formation and characteristics of petroleum reservoirs, the chemical properties of petroleum, the processes involved in the exploitation of reservoirs, post-extraction processing, industrial safety, and the long-term outlook for the oil and gas production. The descriptions and discussions are informed by considering the production histories of several fields including the Ekofisk field in the North Sea, the Wyburn Field in Canada, the Manifa Field in Saudi Arabia and the Wilmington Field off the Californian Coast. The factors leading up to the well blowouts on board the Deepwater Horizon in the Gulf of Mexico and in the Mantara Field in the Timor Sea are also examined. With a glossary to explain key words and concepts, this book is a perfect introduction for newcomers to a petroleum engineering course, as well as non-specialists in industry. Professor David Shallcross is one of the foremost practitioners in chemical engineering education worldwide. Readers of this book will find his previous book, Chemical Engineering Explained, a useful companion.

Emerging Nanodielectric Materials for Energy Storage

Emerging Nanodielectric Materials for Energy Storage PDF

Author: Srikanta Moharana

Publisher: Springer Nature

Published: 2023-10-30

Total Pages: 442

ISBN-13: 3031409388

DOWNLOAD EBOOK →

This contributed volume presents multiple techniques for the synthesis of nanodielectric materials and their composites and examines their applications in the field of energy storage. It overviews various methods for designing these materials and analyses their properties such as mechanical strength, flexibility, dielectric as well as electrical performances for end-user applications such as thin-film flexible capacitors, advanced energy storage capacitors, and supercapacitors. The book gives a special focus on examining the dielectric properties of polymer-based nanomaterials, core-shell structured nanomaterials, and graphene-based polymeric composites among others, and explains the importance of their use in the aforementioned energy storage applications. It provides a great platform for understanding and expanding technological solutions needed for global energy challenges and it is of great benefit to industry professionals, academic researchers, material scientists, engineers, graduate students, physicists, and chemists working in the area of nanodielectrics.

Biomedical Applications of Electroactive Polymer Actuators

Biomedical Applications of Electroactive Polymer Actuators PDF

Author: Federico Carpi

Publisher: John Wiley & Sons

Published: 2009-04-13

Total Pages: 496

ISBN-13: 9780470744680

DOWNLOAD EBOOK →

Giving fundamental information on one of the most promising families of smart materials, electroactive polymers (EAP) this exciting new titles focuses on the several biomedical applications made possible by these types of materials and their related actuation technologies. Each chapter provides a description of the specific EAP material and device configuration used, material processing, device assembling and testing, along with a description of the biomedical application. Edited by well-respected academics in the field of electroactive polymers with contributions from renowned international experts, this is an excellent resource for industrial and academic research scientists, engineers, technicians and graduate students working with polymer actuators or in the fields of polymer science.