Global Developments in Literacy Research for Science Education

Global Developments in Literacy Research for Science Education PDF

Author: Kok-Sing Tang

Publisher: Springer

Published: 2018-01-19

Total Pages: 401

ISBN-13: 331969197X

DOWNLOAD EBOOK →

This book highlights recent developments in literacy research in science teaching and learning from countries such as Australia, Brazil, China, Finland, Germany, Hong Kong, New Zealand, Norway, Singapore, Spain, South Africa, Sweden, Taiwan, and the United States. It includes multiple topics and perspectives on the role of literacy in enhancing science teaching and learning, such as the struggles faced by students in science literacy learning, case studies and evaluations of classroom-based interventions, and the challenges encountered in the science classrooms. It offers a critical and comprehensive investigation on numerous emerging themes in the area of literacy and science education, including disciplinary literacy, scientific literacy, classroom discourse, multimodality, language and representations of science, and content and language integrated learning (CLIL). The diversity of views and research contexts in this volume presents a useful introductory handbook for academics, researchers, and graduate students working in this specialized niche area. With a wealth of instructional ideas and innovations, it is also highly relevant for teachers and teacher educators seeking to improve science teaching and learning through the use of literacy.

A Framework for K-12 Science Education

A Framework for K-12 Science Education PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2012-02-28

Total Pages: 400

ISBN-13: 0309214459

DOWNLOAD EBOOK →

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.

Ambitious Science Teaching

Ambitious Science Teaching PDF

Author: Mark Windschitl

Publisher: Harvard Education Press

Published: 2020-08-05

Total Pages: 455

ISBN-13: 1682531643

DOWNLOAD EBOOK →

2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.

Designing Professional Development for Teachers of Science and Mathematics

Designing Professional Development for Teachers of Science and Mathematics PDF

Author: Susan Loucks-Horsley

Publisher: Corwin Press

Published: 2009-11-24

Total Pages: 425

ISBN-13: 1452272557

DOWNLOAD EBOOK →

"This third edition represents the gold standard of resources for those working in the field of professional development. My staff and I highly recommend this book as a primary resource for designing and continuously improving professional development programs for teachers of science and mathematics. Unlike other resources, this unique and important book provides current research, an updated strategic planning framework, and access to a portfolio of best practices for informing your work." —Sally Goetz Shuler, Executive Director National Science Resources Center "In the 21st century when STEM education has become vital for our students and our nation and the importance of quality professional development has increased at least tenfold, this seminal work should be required reading for every education leader. It is both practical and scholarly in guiding a school toward a culture of continuous learning and improvement." —Harold Pratt, President, Science Curriculum Inc. Former President, National Science Teachers Association The classic guide for designing robust science and mathematics professional development programs! This expanded edition of one of the most widely cited resources in the field of professional learning for mathematics and science educators demonstrates how to design professional development for teachers that is directly linked to improving student learning. Presenting an updated professional development (PD) planning framework, the third edition of the bestseller reflects current research on PD design, underscores how beliefs and local factors can influence the PD design, illustrates a wide range of PD strategies, and emphasizes the importance of: Continuous program monitoring Combining strategies to address diverse needs Building cultures that sustain learning An inspiring blend of theory and practical wisdom, Designing Professional Development for Teachers of Science and Mathematics remains a highly regarded reference for improving professional practice and student achievement.

Exploring the Intersection of Science Education and 21st Century Skills

Exploring the Intersection of Science Education and 21st Century Skills PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2010-02-26

Total Pages: 144

ISBN-13: 030914518X

DOWNLOAD EBOOK →

An emerging body of research suggests that a set of broad "21st century skills"-such as adaptability, complex communication skills, and the ability to solve non-routine problems-are valuable across a wide range of jobs in the national economy. However, the role of K-12 education in helping students learn these skills is a subject of current debate. Some business and education groups have advocated infusing 21st century skills into the school curriculum, and several states have launched such efforts. Other observers argue that focusing on skills detracts attention from learning of important content knowledge. To explore these issues, the National Research Council conducted a workshop, summarized in this volume, on science education as a context for development of 21st century skills. Science is seen as a promising context because it is not only a body of accepted knowledge, but also involves processes that lead to this knowledge. Engaging students in scientific processes-including talk and argument, modeling and representation, and learning from investigations-builds science proficiency. At the same time, this engagement may develop 21st century skills. Exploring the Intersection of Science Education and 21st Century Skills addresses key questions about the overlap between 21st century skills and scientific content and knowledge; explores promising models or approaches for teaching these abilities; and reviews the evidence about the transferability of these skills to real workplace applications.

Contemporary Technologies in Education

Contemporary Technologies in Education PDF

Author: Olusola O. Adesope

Publisher: Springer

Published: 2018-11-08

Total Pages: 268

ISBN-13: 3319896806

DOWNLOAD EBOOK →

This edited volume provides a critical discussion of theoretical, methodological, and practical developments of contemporary forms of educational technologies. Specifically, the book discusses the use of contemporary technologies such as the Flipped Classroom (FC), Massive Open Online Course (MOOC), Social Media, Serious Educational Games (SEG), Wikis, innovative learning software tools, and learning analytic approach for making sense of big data. While some of these contemporary educational technologies have been touted as panaceas, researchers and developers have been faced with enormous challenges in enhancing the use of these technologies to arouse student attention and improve persistent motivation, engagement, and learning. Hence, the book examines how contemporary technologies can engender student motivation and result in improved engagement and learning. Each chapter also discusses the road ahead and where appropriate, uses the current trend to predict future affordances of technologies.

Developments And Dilemmas In Science Education

Developments And Dilemmas In Science Education PDF

Author: Australia. Peter Fensham Monash University

Publisher: Routledge

Published: 2012-11-12

Total Pages: 337

ISBN-13: 1136613781

DOWNLOAD EBOOK →

A summary of the strengths and weaknesses in present practices of science education in schools, and of research in science education. Annotation copyright Book News, Inc. Portland, Or.

Benchmarks for Science Literacy

Benchmarks for Science Literacy PDF

Author: American Association for the Advancement of Science

Publisher: Oxford University Press

Published: 1994-01-06

Total Pages: 448

ISBN-13: 0199840075

DOWNLOAD EBOOK →

Published to glowing praise in 1990, Science for All Americans defined the science-literate American--describing the knowledge, skills, and attitudes all students should retain from their learning experience--and offered a series of recommendations for reforming our system of education in science, mathematics, and technology. Benchmarks for Science Literacy takes this one step further. Created in close consultation with a cross-section of American teachers, administrators, and scientists, Benchmarks elaborates on the recommendations to provide guidelines for what all students should know and be able to do in science, mathematics, and technology by the end of grades 2, 5, 8, and 12. These grade levels offer reasonable checkpoints for student progress toward science literacy, but do not suggest a rigid formula for teaching. Benchmarks is not a proposed curriculum, nor is it a plan for one: it is a tool educators can use as they design curricula that fit their student's needs and meet the goals first outlined in Science for All Americans. Far from pressing for a single educational program, Project 2061 advocates a reform strategy that will lead to more curriculum diversity than is common today. IBenchmarks emerged from the work of six diverse school-district teams who were asked to rethink the K-12 curriculum and outline alternative ways of achieving science literacy for all students. These teams based their work on published research and the continuing advice of prominent educators, as well as their own teaching experience. Focusing on the understanding and interconnection of key concepts rather than rote memorization of terms and isolated facts, Benchmarks advocates building a lasting understanding of science and related fields. In a culture increasingly pervaded by science, mathematics, and technology, science literacy require habits of mind that will enable citizens to understand the world around them, make some sense of new technologies as they emerge and grow, and deal sensibly with problems that involve evidence, numbers, patterns, logical arguments, and technology--as well as the relationship of these disciplines to the arts, humanities, and vocational sciences--making science literacy relevant to all students, regardless of their career paths. If Americans are to participate in a world shaped by modern science and mathematics, a world where technological know-how will offer the keys to economic and political stability in the twenty-first century, education in these areas must become one of the nation's highest priorities. Together with Science for All Americans, Benchmarks for Science Literacy offers a bold new agenda for the future of science education in this country, one that is certain to prepare our children for life in the twenty-first century.